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ABSTRACT: This article studies linear regression in Bayesian inference because it provides greater flexibility and
objectivity when analyzing statistical data. We have attempted to explain the concepts used to study Bayesian
regression (prior, posterior, likelihood, MCMC simulation methods, etc.). Numerical applications and simulations
have illustrated the methodology in different models for calculating the posterior in multiple Bayesian regression.
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I INTRODUCTION

Linear regression analysis is one of the most commonly used in statistical methods for modeling cross-
sectional data. Building a regression model involves estimating the parameters of that model. This allows us to
obtain the regression coefficient for each independent variable. Several methods can be used to estimate these
parameters. The method most frequently used by researchers is the frequentist/classical method, which uses
OLS (Ordinary Least Squares) or MLE (Maximum Likelihood Estimation). The OLS method, also known as the least
squares method, consists of minimizing the number of errors in the regression equation. The parameters of the
regression model are thus obtained by minimizing the error function of the equation. The MLE method, on the
other hand, consists of minimizing the probability density function of a given data set. When using these two
methods, there are classical assumptions that must be satisfied based on the results of the regression modelling.
These assumptions include error independence, identity, and normal distribution. In practice, regression
coefficients are often assumed to be constant. However, in theory, models with one or more varying (i.e., non-
constant) parameters are suggested. The parameter of interest in this analysis is the breakpoint, which indicates
where and when the change occurs.

In addition to these two methods, other methods can be used to estimate the parameters of the
regression model, such as the Bayesian approach. The difference between frequentist and Bayesian methods lies
in the perspective adopted regarding the parameters. The Bayesian approach considers parameters as random
variables, meaning that their value is not unique, unlike the frequentist approach. In this regard, we can say that
the latter method is the best of the three. In this article, we will study and implement Bayesian linear regression
models on different datasets. To do this, we will use Bayes’ theorem. We will begin by examining some basic
concepts related to Bayesian linear regression.

1. BAYESIAN ESTIMATION OF A LINEAR REGRESSION

Bayesian analysis, as developed by Bayes (1763) and Laplace (1995), begins with an examination of a given
situation and the identification of an uncertainty pertaining to an unknown parameter 6. This uncertainty is then
guantified through the application of probabilistic distributions, utilizing fundamental principles of probability
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calculus. The uncertainty about 8 is modeled in the form of a distribution, known as prior distribution, which
provides information about 8 taken as a constant. This prior distribution is updated by extracting information
from the observations of the variable X, to obtain another master distribution known as the posterior
distribution. In this section, we will apply the Bayesian approach to regression models, as first initiated by Jeffreys
(1939).

2.1. Linear regression model (Koch, 2007)

In a population, we wish to predict the values of a quantitative variable y = (y;,¥5, ..., )" from the values of
p — 1. Other variables X, ..., X,,_;. This is equivalent to explaining variations in y from those in Xy, ..., X,,_;. We
then say that we wish to explain y from Xy, ..., X,,_;; so y is called the “variable to be explained” and X, ..., X, _;
are called the “explanatory variables”. The data available are n observations of (y, X1, ...,Xp_l) noted

(yl,xl_l, ...,xl_p_l), e (yn,xn_l, ...,xn,p_l). The linear regression model is written:

Vi =PBo + Pixiy + Boxiz + -+ Bp—lxi,p—l +g, i=1,..,n €Y}
The regression model can be written in matrix from:
y=XB+e (2)
where
[1 %11 " X1p-1
1 X1 - Xzp-1|, . .
. X=]. 2 ! . P77 lis the explanatory variable matrix (n X p);
_1 Xn1 Xnp-1
[ Bo
° B = '8:1 is the vector of unknown regression model parameters (p X 1);
_Bp—l
1
. €= [52] is the error vector (n x 1);
€n

With X = E(y|B) and D(y|a?) = D(¢|B,02) = 0P~ the variance-covariance matrix of y and P the known
positive-definite observation weight matrix. Therefore, y|8,0% ~ N (XB,g2P™1).

NB: Before deciding that y = X + ¢, we first had to check that the scatterplot {(yl-,xl-‘l, s xl-‘p_l), i=1, ...,n}
showed linear regression.
Thus, the likelihood function of vy knowing 8 and o is defined as follows:

1
FO18,0%) = (2ro®)y ™2 (det(P) exp -~ — (v = XB)' Pl - XB)}. 3)
In order to make an inference, estimate of [ are obtained by maximizing the likelihood function or its logarithm.

For mathematical convenience, when the values of the parameters that maximize the two functions are the
same, the In —likelihood is commonly used, given by

1 1
In(f(716,07) = =3 In(@2m) ~ ZIn(0?) + 5 In(det(P) = 5= (7 = XBY POy = XP)
1 1
=—gm@m—gm@a+Emma@n—Zﬁgmw—zﬁxmy+gxmnn 4)

an(f(vIB.0?))
op

we obtain ,[? = (X'PX)~1X'Py, the maximum likelihood estimator of 8. Similarly, for the parameter ¢2:

dln(f(B,0%) _ n

—_— = —XB)'P(y —XpB) = 0. 5

Let 6% = % (y — XB)' P(y — XB), the maximum likelihood estimator of o2

Let’s derive (4) with respect to the variable f and we have: =— # (=2X'Py + X'PXB) = 0. And

2.2, Noninformative prior
In the Bayesian approach, it is necessary and crucial to determine the prior distribution, denoted by 7 (6), of the
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parameter 8. However, in practice, prior information is often inadequate, which complicates and impedes the
selection of an appropriate prior distribution. In scenarios where resources or time are limited, researchers may
find themselves unable to construct an accurate prior, compelling them to rely on the partial information
provided by the model data. This reliance on partial information leads to the adoption of an noninformative prior
distribution. If nothing is known in advance about the unknown parameter 6, it can take on values between —oo
and —oo. Its noninformative prior (8) is then assumed to be

(6) « const for —oo < 6 < +0o, (6)

where const denotes a constant. The density is improper density function, since with f_+:: n(0) # 1. So, if an
unknown parameter like the variance o2 can only take on values between 0 and +, we set

0 =Ino? 7

and again (0) « const for — oo < § < 400, By the transformation of 8 to 2 with % = ﬁ from (7), see for

instance Koch, (1999), the noninformative prior for the variance a2 follows by

m(o?) x pes for 0 < g? < +oo. (®
Very often, it is more convenient to introduce the weight or precision parameter 7 instead of a2 with7 = 1/02.
2
By transforming of a2 to T with ddir = —% the noninformative prior density function for t follows instead of (8)
by
1
n(r)oc;for 0<T<+00 9

The noninformative prior density function (6) which is determined by a constant is selected for the vector 8 of
unknown parameters and the noninformative prior density function (9), which is proportional to 1/7, for the
weight parameter 7. Thus, we have the joint prior distribution between the parameters 8 and ©: ©(B,7) =

m(B)m(t) % Subsequently, using Bayes’ theorem (Ando, 2010) we obtain the posterior joint distribution
(B, tly):

T
m(B, 7ly) o (2m) /e 2exp (= (v — XB) Py — XP))

w2 exp (=2 (v = XBYP(y — X)) (10)
The exponent of the term in (10) can be written as follows:
(v —XB)'P(y—XB) =y'Py —2B'X'Py + B'X'PXp
=y'Py —2(u)'X'Py + (u)'X'PXp" + (B — )’ X'PX(B — u*)
=@ —-Xu)Ply—Xu)+ @B —w)X'PX(B—u") a1y
with u* = (X'PX)"1X'Py.
Remark 2.1. Let Y be anm X 1 random vector and X a random variable. Assume thatY,X~NG(u,V, a, b), so the
joint density function f (y, x|u,V, a, b) is written as (Koch, 2007):

FO, xIu, Va, b) = 2m)™/2(det V)"V2a?(I'(b)) ™

x
xx 20 lexp (= 2a+ (v = WV - w1} (12)
witha >0,b > 0,0 < x < 400 gnd —o0 < y; < +00,
If the random variables Y and X are distributed according to the normal-gamma (NG) distribution,
Y, X~NG(u,V,a,b), then the random vector Y has a marginal distribution that can be expressed as a
t —multivariate distribution, also known as a multivariate Student:

Y~t(u,aV/b,2b) (13)
and the random variable X has marginal distribution that is the gamma distribution:

X~G(a,b) (14)
By substituting in (10) the expression in (11) and comparing with (12) the result obtained with g— 1 =§+
(nz;p) — 1 thus the posterior density function (10) is such that
B,tly~NG(u", (X'PX)~™*,nG?/2,(n — p)/2). (15)

The marginal posterior distribution for the vector f of unknown parameters is then (13) determined by the
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multivariate t —distribution
n
ply~t (i, G P n ). (16)
Therefore, the Bayes estimator f3; of 8 is obtained by E(S|y). Let Bz = (X'PX)~1X'Py. The variance-covariance
matrix D(Bly) = —— 62(X'PX)~1.

Then, the marginal distribution for the weight parameter T obtained from the posterior distribution (15) is the
gamma distribution due to (14)

n

n—-p-2

Tly~G(né?/2,(n —p)/2). (17)

The inverse-gamma distribution is therefore the posterior distribution with variance o2

o?|ly~1G(n6?/2,(n —p)/2). (18)

We therefore obtain the Bayes estimator of o2 defined by 62 = E(a?|y) = n_;_z 6% = (y_xﬁfl)_,:g_x%). The
2n2(52)"

. 2. 2 - ")
variance of 6% is V(0?|y) = (—p-2)2(n—p—-2)°

Properties 2.1. The Bayesian estimators Bz and 62 have the following properties:

o (n—p —2)62/0? follows a Chi-square with n — p degrees of freedom ()(,Zl_p),

° (n_p)(i (_f Bz };)I;Xz(ﬂ_ﬂ'g ) follows a Fisher distribution with (p,n — p) degrees of freedom (F(p,n — p)).
P B

2.3. Informative prior

The prior distribution can be chosen to represent the researcher’s beliefs prior to observing the results of an
experiment, resulting in an approximate subjective Bayesian analysis. After this, the researcher specifies prior
beliefs about the model parameters and expresses them in the form of prior probability distribution.

Let’s consider the variance factor a2, which is now an unknown random variable. To obtain a conjugate prior for
the unknown parameters 8 and o2, we introduce in place of g2 the parameter of unknown weight T with 7 =

1 1n
1/02. Since (det(z7'P71))7z = (det(P))zrz, the likelihood function is written as follows:

T
f@1B,7) = (2m) /2 (det(P))2e" 2exp |~ = (v = XB) P(y = XB)] (19)
As prior for § and t, density function (12) of the normal-gamma distribution
B,t~NG(u,V,a,b) (20)

Is chosen (Koch, 2007; Ando, 2010). The joint posterior distribution is then obtained by combining the likelihood
function with the joint prior distribution:

7B, Tly) o< T/ exp {~=[2a + (B = V(B - W]} TV 2exp [~ = (0 — XBY PGy — XB)|
= /202 exp {—% [2a+ (B —W'V(B - )+ (= XBYP(y — X1} (21)

The bracketed expression for the exponent can be written as:
2a+y'Py+p' Vi =28 X'Py+V 1)+ B'(X'PX +V 1B
=2a+y'Py+pViu— ) X'PX+V O + (B —uw)X'PX+V ) —u)
=2a+y Py+pu' V' iu—2)X'PX+V ')+ W) X'PX+V-DW) + (B —u) X'PX+V1)(B —u)
=2a+@-p)V 7 u—p)+ @ -Xp) Py —Xp)+ B —p)XPX+V (B —p) (22)
with * = (X'PX + V~1)"1(X'Py 4+ V~1u). Substituting (22) into (21) and comparing with (12), we obtain:

B,t|ly~NG(u*,V*, a*,b*) (23)
where

. V*=(X'PX+V~1) L

. a'=R2a+@—p)V 7 ' u—u)+ G -Xu)Ply—Xu)l/2;

. b*=n/2+b.

The marginal posterior distribution of § is according to (13) and (24) the multivariate t —distribution
Bly~t(u*,a*V*/b*,2b") (24)

Consequently, the Bayes estimator 5 of B is given by E(Bly) = u*. Thus, fz = (X'PX + V1)1 (X'Py +
V~1u). Moreover, the marginal posterior distribution for the weight parameter 7 is, according to (14) the gamma
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distribution. Consequently, the variance 7 = 1/02 has an inverse-gamma distribution
a?|ly~IG(a*,b*) (25)

Therefore, the Bayes estimator 62 of o2 is obtained from E(Uzly)=bf_1 and we have 67 =
A N1 oy N _ 282
2a+(u—Ps) v (#nf’;zt(zy Xbp) P& XBB), and the variance V(c?|y) of o2 is V(a?|y) =(;;L_)2. The variance-

covariance matrix D(B|y) of B is D(a?|y) = 62(X'PX + V1)1,

Properties 2.2. Bayesian estimators for informative prior distribution have the following properties:
~2
1 2(b*—1) % follows a Chi-square distribution with 2b* degrees of freedom ;

b*(B-Bg) (x'Px+v=1)(B-Bg)
p(b*—l)&é

2. follows a Fisher distribution with (p, 2b*) degrees of freedom.

. MCMC METHODS

In order to estimate the unknown quantities in the Bayesian models, Markov Chain Monte Carlo (MCMC)
methods are useful tools to sample from those posterior distributions that have no closed form. In this section
we briefly introduce two MCMC algorithms commonly used: Gibbs Sampling.

Bayes’ theorem (Ando, 2010), we have
n(B,0%ly,X) < f(y|X,B,0*)n(Blo?, u,VIn(c?|a, b)

np B
2y 27071 {_ _} 2
« (6?) expl=5 (26)
where B is quantity defined in expression (22). Finally, the joint posterior distribution for a2 and § is given by
1y .. a* ) B—uw)WV)(B-—w)
78,071y, %) o () P exp -2} (02 ) Eexp {— —5 . (@7)

Therefore, the equation (27) shows that the posterior distribution m(B8,5?|y,X) is proportional to the
multiplication of kernels of the IG(a*, b*) and N (u*,a2V*). It turns out that, under this prior distribution,
m(o?|y, X) is inverse-gamma distribution and (|02, y, X) is an multivariate normal distribution, which means
that we can directly sample (a2, 8) from their posterior distribution by first sampling from w(o2|y, X) and then
from w(B|o?,y,X). Since we can sample from both of these distributions, samples from the joint posterior
distribution w(a?, By, X) can be made with Gibbs sampling approximation (Monte Carlo Chain Markov Method)
(Gelfand & Smith, 1990; Robert & Casella, 1999).

A sample value of (62, 8) from (a2, B|y, X) can be made as follow:

. sample 0% ~Inverse — Gamma(a*, b*);

. sample B~Multivariate normal(u*,a?V*).

The pseudo-code for this method is detailed in the algorithm 1 below:

Algorithm 1 Estimation of regression model parameters

Require: Database
Ensure: VP: parameter values

1. VP« @

2. Consider the Bayesian linear regression of y; on (xi‘l,xl-‘z, ...,xi‘p_l), fori=1,..,niey=Xp+¢
3. Prior information

o The conjugate prior distribution for a2 is: a2~IG(a, b)

o The conjugate prior distribution for §|c? is: |02 ~N (u, 02V)

4. Posterior distribution of 8 and o?

Apply the Gibbs sampling method, assuming conditional densities for each parameter:

. n(o?|y,X) = 1G(a*, b*)

. n(Blo?,y,X) =N (u",0%V")

Initialization
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0© = (02, B®)’, the given initial value of 6 = (¢, 8)’

Iteration
Fori=1,2,..,Ndo
Sample:
. 02O ~m(a?|y,X)
° B(i)~n(ﬂlaz(i),y, X)
5. VP « {6,3,33}: optimal values obtained using a usual cost function

Return VP parameters values

Iv. APPLICATION

In this section, we apply the Bayesian approach using R codes. To do this, we will use a database called
“eucalyptus”, which is a study of data provided by height and circumference of 1,429 eucalyptus trees, where
the variable to be explained is their height (euca) and the explanatory variable is their circumference (circ) and
its square root (vcirc). Thus, this model is written as

euca = By + By * circ + B, *Vcirc + ¢ (28)
In this model, we will estimate the parameters of this regression using two different methods, namely:
1. Parameter estimation using the maximum likelihood method

First, we will use the maximum likelihood method, a parameter estimation method employed in classical
statistics, to estimate the unknown parameters of model (28). Here is the result obtained:

Call:
Im(formula = euca ~ circ + I(sqrt(circ)), data = eucalypte)

Coefficients:

(Intercept) circ I(sgrt(circ)) sigma”2
-24.3520 -0.4829 9.9869 1.290783
2. Bayesian estimation

Now, we will apply the Bayesian approach. To do this, we will use the algorithm 1. Priors were already assigned
as: 02~IG(a, b) and B|a?~N (u, V), with:

. 1 =(0,0,0);
10 0 O
. V= < 0 10 O );
0 0 10
. a=1;
. b =0.5.
We will apply the Gibbs sampling method with the following conditional densities for each parameter:
. n(o?ly,X) =1G(a*,b"),
o n(Bla?,y,X) = N (u*,a?V*); with:
> u* = (—15.1712308; —0.2809055; 7.2510905)’;
3.3584375 0.073803701 —1.0000513
> V* =< 0.0738037 0.001662853 —0.0222621>;
—1.0000513 —0.022262096 0.2997903
> a* =943.4281;
> b* = 715.

After performing an iteration with N = 10,000, we obtained the posterior distribution of these parameters. The
following curves illustrate the posterior distribution density of each parameter (see Figure 1)
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8 g 10 11 12
Parameters

Figure 1: Posterior densities of the parameters

Incidentally, these parameters can be given a value and we obtain:
Bayes estimator

beta_0 -24.3705404
beta_1 -0.4834148
beta_2 9.9927856
sigma2 1.3213496

Comments: Thanks to Gibbs sampling (see algorithm 1), we obtain posterior distribution (see Figure 1) and an
illustrative value for these parameters. It is very interesting to note that these values are very close to those
obtained by the likelihood method and that they are not unique. Given all this, we can say that the estimation
method described in algorithm 1 is reliable for estimating the parameters of the Bayesian linear regression
model.

V. CONCLUSION

In this study, we examined the mathematical theory of linear regression using a new approach: the
Bayesian approach. This approach has several advantages over classical analysis. Through this work, we
presented the classical statistics used to calculate estimators of unknown parameters using the maximum
likelihood method. In the case of Bayesian linear regression, we studied two prior distributions: the
noninformative prior distribution and the informative prior distribution. To study the differences between the
classical approach and the Bayesian approach in terms of model formulation and estimation, we used a Monte
Carlo experiment and a general linear regression model. This result may be due to the use of vague priors, which
reflect the researcher’s lack of knowledge about the parameter. In the case, the two methods will give similar
(informative), the Bayesian approach is expected to tend to outperform the classical approach.
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