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ABSTRACT: This article studies linear regression in Bayesian inference because it provides greater flexibility and 

objectivity when analyzing statistical data. We have attempted to explain the concepts used to study Bayesian 

regression (prior, posterior, likelihood, MCMC simulation methods, etc.). Numerical applications and simulations 

have illustrated the methodology in different models for calculating the posterior in multiple Bayesian regression. 
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I. INTRODUCTION 

Linear regression analysis is one of the most commonly used in statistical methods for modeling cross-

sectional data. Building a regression model involves estimating the parameters of that model. This allows us to 

obtain the regression coefficient for each independent variable. Several methods can be used to estimate these 

parameters. The method most frequently used by researchers is the frequentist/classical method, which uses 

OLS (Ordinary Least Squares) or MLE (Maximum Likelihood Estimation). The OLS method, also known as the least 

squares method, consists of minimizing the number of errors in the regression equation. The parameters of the 

regression model are thus obtained by minimizing the error function of the equation. The MLE method, on the 

other hand, consists of minimizing the probability density function of a given data set. When using these two 

methods, there are classical assumptions that must be satisfied based on the results of the regression modelling. 

These assumptions include error independence, identity, and normal distribution. In practice, regression 

coefficients are often assumed to be constant. However, in theory, models with one or more varying (i.e., non-

constant) parameters are suggested. The parameter of interest in this analysis is the breakpoint, which indicates 

where and when the change occurs. 

 

In addition to these two methods, other methods can be used to estimate the parameters of the 

regression model, such as the Bayesian approach. The difference between frequentist and Bayesian methods lies 

in the perspective adopted regarding the parameters. The Bayesian approach considers parameters as random 

variables, meaning that their value is not unique, unlike the frequentist approach. In this regard, we can say that 

the latter method is the best of the three. In this article, we will study and implement Bayesian linear regression 

models on different datasets. To do this, we will use Bayes’ theorem. We will begin by examining some basic 

concepts related to Bayesian linear regression. 

 

II. BAYESIAN ESTIMATION OF A LINEAR REGRESSION 

Bayesian analysis, as developed by Bayes (1763) and Laplace (1995), begins with an examination of a given 

situation and the identification of an uncertainty pertaining to an unknown parameter 𝜃. This uncertainty is then 

quantified through the application of probabilistic distributions, utilizing fundamental principles of probability 
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calculus. The uncertainty about 𝜃 is modeled in the form of a distribution, known as prior distribution, which 

provides information about 𝜃 taken as a constant. This prior distribution is updated by extracting information 

from the observations of the variable 𝑋, to obtain another master distribution known as the posterior 

distribution. In this section, we will apply the Bayesian approach to regression models, as first initiated by Jeffreys 

(1939). 

 

2.1. Linear regression model (Koch, 2007) 

In a population, we wish to predict the values of a quantitative variable 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)′ from the values of 

𝑝 − 1. Other variables 𝑋1, … , 𝑋𝑝−1. This is equivalent to explaining variations in 𝑦 from those in 𝑋1, … , 𝑋𝑝−1. We 

then say that we wish to explain 𝑦 from 𝑋1, … , 𝑋𝑝−1; so 𝑦 is called the “variable to be explained” and 𝑋1, … , 𝑋𝑝−1 

are called the “explanatory variables”. The data available are 𝑛 observations of (𝑦, 𝑋1, … , 𝑋𝑝−1) noted 

(𝑦1, 𝑥1,1, … , 𝑥1,𝑝−1), … , (𝑦𝑛, 𝑥𝑛,1, … , 𝑥𝑛,𝑝−1). The linear regression model is written: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + ⋯ + 𝛽𝑝−1𝑥𝑖,𝑝−1 + 𝜀𝑖 ,     𝑖 = 1, … , 𝑛.                                  (1) 

The regression model can be written in matrix from: 

𝑦 = 𝑋𝛽 + 𝜀,                             (2) 

where 

 𝑋 = [

1
1

𝑥1,1

𝑥2,1

⋯ 𝑥1,𝑝−1

… 𝑥2,𝑝−1

⋮ ⋮ ⋱       ⋮    
1 𝑥𝑛,1

⋯ 𝑥𝑛,𝑝−1

] is the explanatory variable matrix (𝑛 × 𝑝); 

 𝛽 = [

𝛽0

𝛽1

⋮
𝛽𝑝−1

] is the vector of unknown regression model parameters (𝑝 × 1); 

 𝜀 = [

𝜀1

𝜀2

⋮
𝜀𝑛

] is the error vector (𝑛 × 1); 

With 𝑋𝛽 = 𝐸(𝑦|𝛽) and 𝐷(𝑦|𝜎2) = 𝐷(𝜀|𝛽, 𝜎2) = 𝜎2𝑃−1 the variance-covariance matrix of 𝑦 and 𝑃 the known 

positive-definite observation weight matrix. Therefore, 𝑦|𝛽, 𝜎2 ∼ 𝒩(𝑋𝛽, 𝜎2𝑃−1). 

 

NB: Before deciding that 𝑦 = 𝑋𝛽 + 𝜀, we first had to check that the scatterplot {(𝑦𝑖 , 𝑥𝑖,1, … , 𝑥𝑖,𝑝−1), 𝑖 = 1, … , 𝑛} 

showed linear regression. 

Thus, the likelihood function of 𝑦 knowing 𝛽 and 𝜎2 is defined as follows:  

𝑓(𝑦|𝛽, 𝜎2) = (2𝜋𝜎2)−𝑛 2⁄ (det (𝑃))1/2𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)}.                      (3) 

In order to make an inference, estimate of 𝛽 are obtained by maximizing the likelihood function or its logarithm. 

For mathematical convenience, when the values of the parameters that maximize the two functions are the 

same, the ln −likelihood is commonly used, given by 

ln(𝑓(𝑦|𝛽, 𝜎2)) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) +

1

2
ln(det (𝑃)) −

1

2𝜎2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)                                                            

                   = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) +

1

2
ln(det(𝑃)) −

1

2𝜎2
(𝑦′𝑃𝑦 − 2𝛽′𝑋′𝑃𝑦 + 𝛽′𝑋′𝑃𝑋𝛽)                          (4)

 

Let’s derive (4) with respect to the variable 𝛽 and we have: 
𝜕 ln(𝑓(𝑦|𝛽,𝜎2))

𝜕𝛽
= −

1

2𝜎2
(−2𝑋′𝑃𝑦 + 𝑋′𝑃𝑋𝛽) = 0. And 

we obtain 𝛽̂ = (𝑋′𝑃𝑋)−1𝑋′𝑃𝑦, the maximum likelihood estimator of 𝛽. Similarly, for the parameter 𝜎2: 

𝜕 ln(𝑓(𝑦|𝛽, 𝜎2))

𝜕𝜎2
= −

𝑛

2𝜎2
+

1

2(𝜎2)2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽) = 0.                  (5) 

Let 𝜎̂2 =
1

𝑛
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽), the maximum likelihood estimator of 𝜎2. 

 

2.2. Noninformative prior 

In the Bayesian approach, it is necessary and crucial to determine the prior distribution, denoted by 𝜋(𝜃), of the 
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parameter 𝜃. However, in practice, prior information is often inadequate, which complicates and impedes the 

selection of an appropriate prior distribution. In scenarios where resources or time are limited, researchers may 

find themselves unable to construct an accurate prior, compelling them to rely on the partial information 

provided by the model data. This reliance on partial information leads to the adoption of an noninformative prior 

distribution. If nothing is known in advance about the unknown parameter 𝜃, it can take on values between −∞ 

and −∞. Its noninformative prior 𝜋(𝜃) is then assumed to be  

𝜋(𝜃) ∝ 𝑐𝑜𝑛𝑠𝑡  𝑓𝑜𝑟 − ∞ < 𝜃 < +∞,                (6) 

where 𝑐𝑜𝑛𝑠𝑡 denotes a constant. The density is improper density function, since with ∫ 𝜋(𝜃) ≠ 1
+∞

−∞
. So, if an 

unknown parameter like the variance 𝜎2 can only take on values between 0 and +∞, we set 

𝜃 = ln 𝜎2                                                                (7) 

and again 𝜋(𝜃) ∝ 𝑐𝑜𝑛𝑠𝑡  𝑓𝑜𝑟 − ∞ < 𝜃 < +∞. By the transformation of 𝜃 to 𝜎2 with 
𝑑𝜃

𝑑𝜎2 =
1

𝜎2 from (7), see for 

instance Koch, (1999), the noninformative prior for the variance 𝜎2 follows by  

𝜋(𝜎2) ∝
1

𝜎2
 𝑓𝑜𝑟  0 < 𝜎2 < +∞.                       (8) 

Very often, it is more convenient to introduce the weight or precision parameter 𝜏 instead of 𝜎2 with 𝜏 = 1/𝜎2. 

By transforming of 𝜎2 to 𝜏 with 
𝑑𝜎2

𝑑𝜏
= −

1

𝜏
 the noninformative prior density function for 𝜏 follows instead of (8) 

by 

𝜋(𝜏) ∝
1

𝜏
 𝑓𝑜𝑟  0 < 𝜏 < +∞                                 (9) 

The noninformative prior density function (6) which is determined by a constant is selected for the vector 𝛽 of 

unknown parameters and the noninformative prior density function (9), which is proportional to 1/𝜏, for the 

weight parameter 𝜏. Thus, we have the joint prior distribution between the parameters 𝛽 and 𝜏: 𝜋(𝛽, 𝜏) =

𝜋(𝛽)𝜋(𝜏) ∝
1

𝜏
. Subsequently, using Bayes’ theorem (Ando, 2010) we obtain the posterior joint distribution 

𝜋(𝛽, 𝜏|𝑦): 

𝜋(𝛽, 𝜏|𝑦) ∝ (2𝜋)−𝑛 2⁄ 𝜏𝑛 2⁄ 𝑒𝑥𝑝 {−
𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)}                                                                                       

                  ∝ 𝜏𝑛 2−1⁄ 𝑒𝑥𝑝 {−
𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)}                                                                                          (10)

 

The exponent of the term in (10) can be written as follows: 

(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽) = 𝑦′𝑃𝑦 − 2𝛽′𝑋′𝑃𝑦 + 𝛽′𝑋′𝑃𝑋𝛽                                                                                                                    

      = 𝑦′𝑃𝑦 − 2(𝜇∗)′𝑋′𝑃𝑦 + (𝜇∗)′𝑋′𝑃𝑋𝜇∗ + (𝛽 − 𝜇∗)′𝑋′𝑃𝑋(𝛽 − 𝜇∗)                   

                              = (𝑦 − 𝑋𝜇∗)′𝑃(𝑦 − 𝑋𝜇∗) + (𝛽 − 𝜇∗)′𝑋′𝑃𝑋(𝛽 − 𝜇∗)                                                  (11)        
 

with 𝜇∗ = (𝑋′𝑃𝑋)−1𝑋′𝑃𝑦. 

Remark 2.1. Let 𝑌 be an 𝑚 × 1 random vector and 𝑋 a random variable. Assume that 𝑌, 𝑋~𝑁𝐺(𝜇, 𝑉, 𝑎, 𝑏), so the 

joint density function 𝑓(𝑦, 𝑥|𝜇, 𝑉, 𝑎, 𝑏) is written as (Koch, 2007): 

𝑓(𝑦, 𝑥|𝜇, 𝑉𝑎, 𝑏) = (2𝜋)𝑚 2⁄ (𝑑𝑒𝑡 𝑉)−1 2⁄ 𝑎𝑏(𝛤(𝑏))
−1

                                                                                                           

                                               × 𝑥−𝑚 2⁄ +𝑏−1𝑒𝑥𝑝 {−
𝑥

2
[2𝑎 + (𝑦 − 𝜇)𝑇𝑉−1(𝑦 − 𝜇)]}                                   (12) 

 

with 𝑎 > 0, 𝑏 > 0, 0 < 𝑥 < +∞ and −∞ < 𝑦𝑖 < +∞. 

If the random variables 𝑌 and 𝑋 are distributed according to the normal-gamma (NG) distribution, 

𝑌, 𝑋~𝑁𝐺(𝜇, 𝑉, 𝑎, 𝑏), then the random vector 𝑌 has a marginal distribution that can be expressed as a 

𝑡 −multivariate distribution, also known as a multivariate Student: 

𝑌~𝑡(𝜇, 𝑎𝑉 𝑏⁄ , 2𝑏)                                                                                                                                                       (13) 

and the random variable 𝑋 has marginal distribution that is the gamma distribution: 

𝑋~𝐺(𝑎, 𝑏)                                                                                                                                                                    (14) 

By substituting in (10) the expression in (11) and comparing with (12) the result obtained with 
𝑛

2
− 1 =

𝑝

2
+

(𝑛−𝑝)

2
− 1 thus the posterior density function (10) is such that 

𝛽, 𝜏|𝑦~𝑁𝐺(𝜇∗, (𝑋′𝑃𝑋)−1, 𝑛𝜎̂2 2, (𝑛 − 𝑝) 2⁄⁄ ).                                                                                                         (15) 

The marginal posterior distribution for the vector 𝛽 of unknown parameters is then (13) determined by the 
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multivariate 𝑡 −distribution 

𝛽|𝑦~𝑡 (𝜇∗,
𝑛

𝑛 − 𝑝
𝜎̂2(𝑋′𝑃𝑋)−1, 𝑛 − 𝑝).                                                 (16) 

Therefore, the Bayes estimator 𝛽̂𝐵  of 𝛽 is obtained by 𝐸(𝛽|𝑦). Let 𝛽̂𝐵 = (𝑋′𝑃𝑋)−1𝑋′𝑃𝑦.  The variance-covariance 

matrix 𝐷(𝛽|𝑦) =
𝑛

𝑛−𝑝−2
𝜎̂2(𝑋′𝑃𝑋)−1.  

Then, the marginal distribution for the weight parameter 𝜏 obtained from the posterior distribution (15) is the 

gamma distribution due to (14) 

𝜏|𝑦~𝐺(𝑛𝜎̂2 2, (𝑛 − 𝑝) 2⁄⁄ ).                                         (17) 

The inverse-gamma distribution is therefore the posterior distribution with variance 𝜎2 

𝜎2|𝑦~𝐼𝐺(𝑛𝜎̂2 2, (𝑛 − 𝑝) 2⁄⁄ ).                                    (18) 

We therefore obtain the Bayes estimator of 𝜎2 defined by 𝜎̂𝐵
2 = 𝐸(𝜎2|𝑦) =

𝑛

𝑛−𝑝−2
𝜎̂2 =

(𝑦−𝑋𝛽̂𝐵)
′
𝑃(𝑦−𝑋𝛽̂𝐵)

𝑛−𝑝−2
. The 

variance of 𝜎2 is 𝑉(𝜎2|𝑦) =
2𝑛2(𝜎̂2)

2

(𝑛−𝑝−2)2(𝑛−𝑝−4)
. 

Properties 2.1.  The Bayesian estimators 𝛽̂𝐵  and 𝜎̂𝐵
2 have the following properties: 

 (𝑛 − 𝑝 − 2)𝜎̂𝐵
2 𝜎2⁄  follows a Chi-square with 𝑛 − 𝑝 degrees of freedom (𝜒𝑛−𝑝

2 ), 

 
(𝑛−𝑝)(𝛽−𝛽̂𝐵)

′
𝑋′𝑃𝑋(𝛽−𝛽̂𝐵)

𝑝(𝑛−𝑝−2) 𝜎̂𝐵
2  follows a Fisher distribution with  (𝑝, 𝑛 − 𝑝) degrees of freedom (𝐹(𝑝, 𝑛 − 𝑝)). 

 

2.3. Informative prior 

The prior distribution can be chosen to represent the researcher’s beliefs prior to observing the results of an 

experiment, resulting in an approximate subjective Bayesian analysis. After this, the researcher specifies prior 

beliefs about the model parameters and expresses them in the form of prior probability distribution. 

Let’s consider the variance factor 𝜎2, which is now an unknown random variable. To obtain a conjugate prior for 

the unknown parameters 𝛽 and 𝜎2, we introduce in place of 𝜎2 the parameter of unknown weight 𝜏 with 𝜏 =

1/𝜎2. Since (det (𝜏−1𝑃−1))−
1

2 = (det (𝑃))
1

2𝜏
𝑛

2, the likelihood function is written as follows:  

𝑓(𝑦|𝛽, 𝜏) = (2𝜋)−𝑛 2⁄ (det (𝑃))1/2𝜏𝑛 2⁄ 𝑒𝑥𝑝 [−
𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)]                                                           (19) 

As prior for 𝛽 and 𝜏, density function (12) of the normal-gamma distribution 

𝛽, 𝜏~𝑁𝐺(𝜇, 𝑉, 𝑎, 𝑏)                                                                                                                                                          (20) 

Is chosen (Koch, 2007; Ando, 2010). The joint posterior distribution is then obtained by combining the likelihood 

function with the joint prior distribution: 

𝜋(𝛽, 𝜏|𝑦) ∝ 𝜏𝑝 2+𝑏−1⁄ 𝑒𝑥𝑝 {−
𝜏

2
[2𝑎 + (𝛽 − 𝜇)′𝑉−1(𝛽 − 𝜇)]} 𝜏𝑛 2⁄ 𝑒𝑥𝑝 [−

𝜏

2
(𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)]                             

                       = 𝜏𝑛 2+𝑏+𝑝 2−1⁄⁄ 𝑒𝑥𝑝 {−
𝜏

2
[2𝑎 + (𝛽 − 𝜇)′𝑉−1(𝛽 − 𝜇) + (𝑦 − 𝑋𝛽)′𝑃(𝑦 − 𝑋𝛽)]}                                    (21) 

 

The bracketed expression for the exponent can be written as: 

2𝑎 + 𝑦′𝑃𝑦 + 𝜇′𝑉−1𝜇 − 2𝛽′(𝑋′𝑃𝑦 + 𝑉−1𝜇) + 𝛽′(𝑋′𝑃𝑋 + 𝑉−1)𝛽                                                                                                                      

= 2𝑎 + 𝑦′𝑃𝑦 + 𝜇′𝑉−1𝜇 − (𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)𝜇∗ + (𝛽 − 𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − 𝜇∗)                                                                              

= 2𝑎 + 𝑦′𝑃𝑦 + 𝜇′𝑉−1𝜇 − 2(𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1𝜇) + (𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝜇∗)′ + (𝛽 − 𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − 𝜇∗)                          

     = 2𝑎 + (𝜇 − 𝜇∗)′𝑉−1(𝜇 − 𝜇∗) + (𝑦 − 𝑋𝜇∗)′𝑃(𝑦 − 𝑋𝜇∗) + (𝛽 − 𝜇∗)′(𝑋′𝑃𝑋 + 𝑉−1)(𝛽 − 𝜇∗)            (22)                                                

 

with 𝜇∗ = (𝑋′𝑃𝑋 + 𝑉−1)−1(𝑋′𝑃𝑦 + 𝑉−1𝜇). Substituting (22) into (21) and comparing with (12), we obtain: 

𝛽, 𝜏|𝑦~𝑁𝐺(𝜇∗, 𝑉∗, 𝑎∗, 𝑏∗)                                                                                                                                       (23) 

where 

 𝑉∗ = (𝑋′𝑃𝑋 + 𝑉−1)−1; 

 𝑎∗ = [2𝑎 + (𝜇 − 𝜇∗)′𝑉−1(𝜇 − 𝜇∗) + (𝑦 − 𝑋𝜇∗)′𝑃(𝑦 − 𝑋𝜇∗)] 2;⁄  

 𝑏∗ = 𝑛 2⁄ + 𝑏. 

The marginal posterior distribution of 𝛽 is according to (13) and (24) the multivariate 𝑡 −distribution 

𝛽|𝑦~𝑡(𝜇∗, 𝑎∗𝑉∗ 𝑏∗⁄ , 2𝑏∗)                                                     (24) 

Consequently, the Bayes estimator 𝛽̂𝐵 of 𝛽 is given by 𝐸(𝛽|𝑦) = 𝜇∗. Thus, 𝛽̂𝐵 = (𝑋′𝑃𝑋 + 𝑉−1)−1(𝑋′𝑃𝑦 +

𝑉−1𝜇). Moreover, the marginal posterior distribution for the weight parameter 𝜏 is, according to (14) the gamma 
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distribution. Consequently, the variance 𝜏 = 1/𝜎2 has an inverse-gamma distribution 

𝜎2|𝑦~𝐼𝐺(𝑎∗, 𝑏∗)                                                                    (25) 

Therefore, the Bayes estimator 𝜎̂𝐵
2 of 𝜎2 is obtained from 𝐸(𝜎2|𝑦) =

𝑎∗

𝑏∗−1
 and we have 𝜎̂𝐵

2 =

2𝑎+(𝜇−𝛽̂𝐵)
′
𝑉−1(𝜇−𝛽̂𝐵)+(𝑦−𝑋𝛽̂𝐵)

′
𝑃(𝑦−𝑋𝛽̂𝐵)

𝑛+2𝑏−2
, and the variance 𝑉(𝜎2|𝑦) of 𝜎2 is 𝑉(𝜎2|𝑦) =

(𝜎̂𝐵
2 )

2

𝑏∗−2
. The variance-

covariance matrix 𝐷(𝛽|𝑦) of 𝛽 is 𝐷(𝜎2|𝑦) = 𝜎̂𝐵
2(𝑋′𝑃𝑋 + 𝑉−1)−1. 

 

Properties 2.2. Bayesian estimators for informative prior distribution have the following properties: 

1. 2(𝑏∗ − 1)
𝜎̂𝐵

2

𝜎2 follows a Chi-square distribution with 2𝑏∗  degrees of freedom ; 

2. 
𝑏∗(𝛽−𝛽̂𝐵)

′
(𝑋′𝑃𝑋+𝑉−1)(𝛽−𝛽̂𝐵)

𝑝(𝑏∗−1)𝜎̂𝐵
2  follows a Fisher distribution with (𝑝, 2𝑏∗) degrees of freedom. 

 

III. MCMC METHODS 

In order to estimate the unknown quantities in the Bayesian models, Markov Chain Monte Carlo (MCMC) 

methods are useful tools to sample from those posterior distributions that have no closed form. In this section 

we briefly introduce two MCMC algorithms commonly used: Gibbs Sampling. 

Bayes’ theorem (Ando, 2010), we have  

𝜋(𝛽, 𝜎2|𝑦, 𝑋) ∝ 𝑓(𝑦|𝑋, 𝛽, 𝜎2)𝜋(𝛽|𝜎2, 𝜇, 𝑉)𝜋(𝜎2|𝑎, 𝑏)                                                                                               

                               ∝ (𝜎2)−
𝑛
2

−
𝑝
2

−𝑏−1𝑒𝑥𝑝 {−
𝐵

2𝜎2
}                                                                              (26)                               

 

where 𝐵 is quantity defined in expression (22). Finally, the joint posterior distribution for 𝜎2 and 𝛽 is given by 

  𝜋(𝛽, 𝜎2|𝑦, 𝑋) ∝ (
1

𝜎2
)  𝑏

∗+1𝑒𝑥𝑝 {−
𝑎∗

𝜎2
} (𝜎2  )−

𝑝
2  𝑒𝑥𝑝 {−

(𝛽 − 𝜇∗)′(𝑉∗)−1(𝛽 − 𝜇∗)

2𝜎2
}.                                       (27)                

                          
 

 

Therefore, the equation (27) shows that the posterior distribution 𝜋(𝛽, 𝜎2|𝑦, 𝑋) is proportional to the 

multiplication of kernels of the 𝐼𝐺(𝑎∗, 𝑏∗) and 𝒩(𝜇∗, 𝜎2𝑉∗). It turns out that, under this prior distribution, 

𝜋(𝜎2|𝑦, 𝑋) is inverse-gamma distribution and 𝜋(𝛽|𝜎2, 𝑦, 𝑋) is an multivariate normal distribution, which means 

that we can directly sample (𝜎2, 𝛽) from their posterior distribution by first sampling from 𝜋(𝜎2|𝑦, 𝑋) and then 

from 𝜋(𝛽|𝜎2, 𝑦, 𝑋). Since we can sample from both of these distributions, samples from the joint posterior 

distribution 𝜋(𝜎2, 𝛽|𝑦, 𝑋) can be made with Gibbs sampling approximation (Monte Carlo Chain Markov Method) 

(Gelfand & Smith, 1990; Robert & Casella, 1999). 

A sample value of (𝜎2, 𝛽) from 𝜋(𝜎2, 𝛽|𝑦, 𝑋) can be made as follow: 

 sample 𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑎∗, 𝑏∗); 

 sample 𝛽~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇∗, 𝜎2𝑉∗). 

The pseudo-code for this method is detailed in the algorithm 1 below: 

Algorithm 1  Estimation of regression model parameters 

Require: Database 

Ensure: 𝑉𝑃: parameter values 

1. 𝑉𝑃 ← ∅ 

2. Consider the Bayesian linear regression of 𝑦𝑖 on (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑝−1), for 𝑖 = 1, … , 𝑛, i.e. 𝑦 = 𝑋𝛽 + 𝜀 

3. Prior information 

 The conjugate prior distribution for 𝜎2 is: 𝜎2~𝐼𝐺(𝑎, 𝑏) 

 The conjugate prior distribution for 𝛽|𝜎2 is: 𝛽|𝜎2~𝒩(𝜇, 𝜎2𝑉) 

4. Posterior distribution of 𝜷 and 𝝈𝟐 

Apply the Gibbs sampling method, assuming conditional densities for each parameter: 

 𝜋(𝜎2|𝑦, 𝑋) = 𝐼𝐺(𝑎∗, 𝑏∗) 

 𝜋(𝛽|𝜎2, 𝑦, 𝑋) = 𝒩(𝜇∗, 𝜎2𝑉∗) 

Initialization 
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𝜃(0) = (𝜎2(0), 𝛽(0))
′
, the given initial value of 𝜃 = (𝜎2, 𝛽)′  

        Iteration  

        For 𝑖 = 1,2, … , 𝑁 do 

        Sample:  

 𝜎2(𝑖)~𝜋(𝜎2|𝑦, 𝑋) 

 𝛽(𝑖)~𝜋(𝛽|𝜎2(𝑖), 𝑦, 𝑋) 

5. 𝑉𝑃 ← {𝜎̂𝐵
2, 𝛽̂𝐵}: optimal values obtained using a usual cost function 

6. Return 𝑉𝑃 parameters values 

 

IV. APPLICATION 

In this section, we apply the Bayesian approach using R codes. To do this, we will use a database called 

“eucalyptus”, which is a study of data provided by height and circumference of 1,429 eucalyptus trees, where 

the variable to be explained is their height (𝑒𝑢𝑐𝑎) and the explanatory variable is their circumference (𝑐𝑖𝑟𝑐) and 

its square root (√𝑐𝑖𝑟𝑐). Thus, this model is written as 

𝑒𝑢𝑐𝑎 = 𝛽0 + 𝛽1 ∗ 𝑐𝑖𝑟𝑐 + 𝛽2 ∗ √𝑐𝑖𝑟𝑐 + 𝜀                               (28) 

In this model, we will estimate the parameters of this regression using two different methods, namely: 

1. Parameter estimation using the maximum likelihood method 

First, we will use the maximum likelihood method, a parameter estimation method employed in classical 

statistics, to estimate the unknown parameters of model (28). Here is the result obtained: 

                Call: 

lm(formula = euca ~ circ + I(sqrt(circ)), data = eucalypte) 

 

Coefficients:                                  

(Intercept)           circ           I(sqrt(circ))     sigma^2 

     -24.3520        -0.4829         9.9869         1.290783 

2. Bayesian estimation 

Now, we will apply the Bayesian approach. To do this, we will use the algorithm 1. Priors were already assigned 

as: 𝜎2~𝐼𝐺(𝑎, 𝑏) and 𝛽|𝜎2~𝒩(𝜇, 𝜎2𝑉), with: 

 𝜇 = (0,0,0)′; 

 𝑉 = (
10 0 0
0 10 0
0 0 10

); 

 𝑎 = 1; 

 𝑏 = 0.5. 

We will apply the Gibbs sampling method with the following conditional densities for each parameter: 

 𝜋(𝜎2|𝑦, 𝑋) = 𝐼𝐺(𝑎∗, 𝑏∗), 

 𝜋(𝛽|𝜎2, 𝑦, 𝑋) = 𝒩(𝜇∗, 𝜎2𝑉∗); with: 

 𝜇∗ = (−15.1712308; −0.2809055; 7.2510905)′; 

 𝑉∗ = (
3.3584375 0.073803701 −1.0000513
0.0738037 0.001662853 −0.0222621

−1.0000513 −0.022262096 0.2997903
); 

 𝑎∗ = 943.4281; 

 𝑏∗ = 715. 

After performing an iteration with 𝑁 = 10,000, we obtained the posterior distribution of these parameters. The 

following curves illustrate the posterior distribution density of each parameter (see Figure 1) 

file:///C:/Users/Administrator/Published%20-%202024/7-5/820-fees/www.iarjournals.com


American Journal of Sciences and Engineering Research www.iarjournals.com 

 

55 www.iarjournals.com 

 

 
Figure 1: Posterior densities of the parameters 

 

Incidentally, these parameters can be given a value and we obtain: 

                               Bayes estimator                         

       beta_0              -24.3705404 

       beta_1              -0.4834148   

       beta_2                9.9927856  

       sigma^2              1.3213496 

 

Comments: Thanks to Gibbs sampling (see algorithm 1), we obtain posterior distribution (see Figure 1) and an 

illustrative value for these parameters. It is very interesting to note that these values are very close to those 

obtained by the likelihood method and that they are not unique. Given all this, we can say that the estimation 

method described in algorithm 1 is reliable for estimating the parameters of the Bayesian linear regression 

model. 

 

V. CONCLUSION 

In this study, we examined the mathematical theory of linear regression using a new approach: the 

Bayesian approach. This approach has several advantages over classical analysis. Through this work, we 

presented the classical statistics used to calculate estimators of unknown parameters using the maximum 

likelihood method. In the case of Bayesian linear regression, we studied two prior distributions: the 

noninformative prior distribution and the informative prior distribution. To study the differences between the 

classical approach and the Bayesian approach in terms of model formulation and estimation, we used a Monte 

Carlo experiment and a general linear regression model. This result may be due to the use of vague priors, which 

reflect the researcher’s lack of knowledge about the parameter. In the case, the two methods will give similar 

(informative), the Bayesian approach is expected to tend to outperform the classical approach. 
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