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Abstract: Inspired by previous models in the literature, this project focuses on creating a tree pricing model 

utilizing underlying asset price dynamics governed by Itô-Mckean skew fractional Brownian motion (FBM). The 

objective is to simplify the Black-Scholes option pricing equation, which is modelled by fractional Brownian 

motion, into a one-dimensional heat equation. This simplification enables obtaining the solution through the 

application of the Laplace transform method (LTM). Additionally, the project includes conducting a sensitivity 

analysis for the worth profile, accompanied by illustrative examples within a specific context. The researcher 

possesses knowledge of the binomial method of option pricing as well as tree theory. 
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I. INTRODUCTION 

In the realm of dynamic asset pricing theory, discrete-time option pricing models have traditionally 

been overshadowed by their continuous-time counterparts ([Bock & Korn, 2016; Shirvani et al., 2020) [1, 2]. This 

is primarily attributed to the well-developed theory surrounding semi-martingales, Lévy processes, and the 

fundamental theorem of asset pricing (Jarrow, 2012; Protter, 2004; Guasoni et al., 2012) [3, 4, 5]. Options are 

among the most widely utilized financial products, enabling the trading of future market prices, bond futures, 

currency futures, commodity equities, and interest rate futures (Li, 2019)[6] . The Black–Scholes Model is a 

popular choice for option pricing, representing one of the most critical applications in finance. In the absence 

of transaction costs, the value of an option can be determined using the Black–Scholes model. In a related 

context, Caputo, Vijayan, & Manimaran (2023) [7]   proposed a solution for the fractional Black–Scholes 

equation (FBSE) problem. 

 

Their primary objective was to demonstrate the solution to the fractional Black–Scholes equation (FBSE) 

using a semi-analytical method known as the homotopy analysis Shehu transform method (HASTM). They also 

conducted a comparative analysis with other methods such as the homotopy analysis method (HAM), 

homotopy perturbation method (HPM), and Elzaki transform homotopy perturbation method (ETHPM). 

Fractional calculus has seen increased use in analyzing stochastic processes driven by fractional Brownian 

motion processes (Osu & Chukwunezu, 2016)[8]. Fractional Brownian motion with a Hurst exponent H ∈ (0,1) is 

a stochastic process {𝐵𝑅 (𝑡), 𝑡 ∈  ℝ} that satisfies the following properties: 

1. 𝐵𝑅(𝑡) is Gaussian, that is, for every t > 0,  𝐵𝑅(𝑡) has a normal distribution 

2. 𝐵𝑅(𝑡)is a self similar process meaning that for any 𝜉 > 0,   𝐵𝑅 (𝜉, 𝑡) has the same  law as 𝜉𝑅𝐵𝑅(𝑡).  

3. It has stationary increments, that is, 𝐵𝑅(𝑡) - 𝐵𝑅 (𝑠)~𝐵𝑅 (𝑡 − 𝑠). 

www.iarjournals.com


American Journal of Sciences and Engineering Research www.iarjournals.com 

 

36 www.iarjournals.com 

 

Mandlbrov (1963) [9] studied the Fractional Brownian motion (FBM) and discovered many of its properties. 

Fractional Brownian motion finds application in pricing financial derivatives, which are instruments whose 

price depends on or is derived from the value of another asset, often a stock. The concept of financial 

derivatives is not new. While there is some historical debate about the exact date of their creation, it is widely 

accepted that the first attempt at modern derivative pricing began with the work of Charles Castelly (Hui, 

2012) [10]. 

The Black-Scholes option pricing equation, when modeled by fractional Brownian motion, involves replacing 

the standard Brownian motion in the classical Black-Scholes equation with fractional Brownian motion, which 

includes the Hurst exponent, 𝑅. The Hurst exponent, denoted by  𝑅, is a statistical measure used to classify 

time series. Its value ranges between 0 and 1 

The binomial formula, as described by Cox et al. (1979) [11], is a valuable tool for calculating the price of a call 

option. It is well established that the price computed using the binomial formula converges to the price 

determined by the Black-Scholes formula, as the number of periods (nn) approaches infinity, as demonstrated 

by Black & Scholes (1973) [12] 

Osu & Duruojinkeya (2023) [13] , on the other hand, proposed a formula for estimating the expected returns of 

options and stock based on their risk characteristics. In their work, they applied the principles of the binomial 

method of option pricing and tree theory to calculate the fair value of options. At each node of the tree, they 

considered two possible outcomes: an increase in the price of the underlying asset and a decrease in the price 

of the underlying asset. 

Building upon this model, our objective is to create a tree pricing model where the underlying asset price 

dynamics follow Itô-Mckean skew fractional Brownian motion. To determine the worth profile at each node of 

the tree, we simplify the Black-Scholes option pricing equation, which is modeled by fractional Brownian 

motion, into a one-dimensional heat equation. We then solve this equation using the Laplace transform 

method. 

Tree theory finds application in various mathematical areas and serves as an intriguing component of 

combinatorial set theory. 

Definition 1.1: Mathematically a tree is a partially ordered set 𝑇 =< 𝑇1 ≤  𝑇 > such that for every 𝑋𝜖𝑇, the 

set 𝑥 = {𝑦 ∈ 𝑇: 𝑦 <𝑇 𝑥 }is well-ordered by ≤ 𝑇. 

 

It is customary to represent trees n pictures from as illustrated below; 

 

1(a)                              1(b)   

 

Fig.1: General Tree 

 

Figure 1 illustrates trees with 𝑛 vertices and 𝑛 − 1 edges. The watering in figure 1(a) symbolizes government 

policies, which, when favorable for investment, can lead to a garden as shown in figure 1(b). This analogy 

suggests that investors' worth profiles can flourish like trees planted by rivers of water, as mentioned in Psalms 

1 verse 3, Osu et al (2024) [13]. 

The binomial tree method works by initially using the formula for a single-period call option, which can then be 

expanded to a two-period call option and further to an n–period call option. To create an n–period look-alike 

option using the binomial tree pricing formula, we divide the effective period 𝑇 of the option into small 
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intervals of  ∆𝑡. At each interval  ∆𝑡 , the stock price changes from 𝑆 to either 𝑆𝑢 (for an upward movement) or 

𝑆𝑑  (for a downward movement). If the probability of an upward price movement is  𝑃, then the probability of a 

downward movement is 1 − 𝑃. 

The formula is derived using a risk-neutral pricing principle because the rate of change in the underlying asset 

follows a normal distribution. The binomial tree option pricing model has become a standard pricing method 

for major stock exchanges worldwide (Osu & Duruojinkeya, 2023) [14]. 

A pricing tree enhances the Black-Scholes (BS) model by considering multiple potential future price paths for 

the underlying asset, instead of assuming a single deterministic path as the BS model does. This enables a 

more precise pricing of options, especially in scenarios with substantial uncertainty or volatility in the 

underlying asset's price. By integrating multiple price paths, a pricing tree can offer a more realistic valuation 

of option prices and accommodate factors such as mean reversion, jumps, and other forms of price dynamics 

that the BS model may not fully encompass. 

We also have the Conversational BS (ConvoBS) model, which like any other AI model, has several limitations 

that can impact its performance in various contexts: 

1. Context Dependency: It might struggle to maintain context over long conversations or understand 

nuances in context switches. 

2. Common Sense Reasoning: It may lack comprehensive understanding of common sense knowledge, 

leading to occasional nonsensical responses. 

3. Emotional Intelligence: While it can generate responses, it might not always recognize or appropriately 

respond to emotional cues in a conversation. 

4. Limited Creativity: It may not consistently produce creative or original responses, relying instead on 

patterns learned from the training data. 

5. Sensitive Topics Handling: It may not handle sensitive or controversial topics appropriately, potentially 

generating offensive or biased responses. 

6. Data Bias: It may inadvertently perpetuate biases present in the training data, leading to biased or 

unfair responses. 

7. Complex Reasoning: It may struggle with complex reasoning tasks or questions requiring deep 

understanding or critical thinking. 

8. Domain Specificity: It may not perform well in specialized domains outside its training data. 

9. Open-ended Questions: It may provide irrelevant or unhelpful responses to open-ended questions that 

require subjective interpretation or personal opinion. 

10. Ethical Concerns: It may generate inappropriate or harmful content, raising ethical concerns about its 

use and deployment. 

 

Despite these limitations, the Black-Scholes (BS) model, developed several decades ago, still has its merits in 

certain contexts: 

1. Simplicity: The BS model is relatively straightforward and easy to implement, making it accessible for 

teaching purposes and for basic option pricing needs. 

2. Speed: Since it's a closed-form solution, the BS model can be computed quickly compared to some 

modern computational models, which may require more complex algorithms and longer processing 

times. 

3. Market Liquidity Assumption: The BS model assumes continuous trading and perfectly liquid markets, 

which might be a reasonable approximation for certain highly traded assets in certain conditions. 

4. Historical Context: Understanding the BS model provides a foundation for understanding more 

advanced option pricing models, as it was one of the 

 

The task is to determine the value of a stock at each node of the tree depicted in Figure 1. It is noteworthy that 

each node satisfies a polar form of a diffusion equation in a spherical coordinate system, as expressed by 

(Datta & Pal, 2018)[15]: 

file:///F:/256/Paper-AJ/Published%20data/Published%20-%202024/7-2/760-fees/www.iarjournals.com
file:///C:/Users/HP/Downloads/MSc%20KKTM%20Ledang/www.iarjournals.com


American Journal of Sciences and Engineering Research www.iarjournals.com 

 

38 www.iarjournals.com 

 

                                   
𝜕𝐼

𝜕𝑡
=

𝑘

𝑠2

𝜕

𝜕𝑟
(𝑠2 𝜕𝐼

𝜕𝑟
) +

1

𝑠2 sin 𝜃

𝜕𝐼

𝜕𝜃
(sin 𝜃

𝜕𝐼

𝜕𝜃
) +

1

s2sin2 𝜃

𝑑2𝐼

𝑑∅2.   (1)   

where; 𝐼 = the worth of the stock, 𝑘 = diffusion coefficient, (𝑆, 𝜃, ∅) = point in spherical coordinate and 𝑆 is 

the stock price.  

In the radial direction, one-dimension form of (1) can be written as:  

                                    
𝜕𝐼

𝜕𝑡
−  

1

2
𝜎2𝑆2 𝜕2𝐼

𝜕𝑆2 − 𝑟(𝑡)𝑆
𝜕𝐼

𝜕𝑆
+ 𝑟(𝑡)𝐼 = 0,                                        (2)              

with 𝐼(0 , 𝑡) = 0 , 𝐼(𝑆 , 𝑡)~𝑆 𝑎𝑠 𝑆 → ∞, where  𝐼 =, 𝐼(𝑆 , 𝑡)  = European option prices; S =Asset price, t = Time, r 

=Risk-free rate,  𝜎 =Volatility. 

 

Definition 1 The Riemann-Liouville fractional integral of 𝕗 with order 𝜇 is defined by  

𝕀𝜇𝕗(𝑥) =
1

Γ(𝜇)
∫ (𝑥 − 𝜏)𝜇−1𝕗(𝜏)

𝑥

0
𝑑𝜏    (3) 

Definition 2 The Riemann-Liouville fractional derivative of 𝕗 with order 𝜇 is defined by   

𝐷𝑥
𝜇

𝕗(𝑥) =
1

Γ(𝑚−𝜇)

𝑑𝑚

𝑑𝑥𝑚 ∫ (𝑥 − 𝜏)𝑚−𝜇−1𝕗(𝜏)𝑑𝜏
𝑥

0
\   (4) 

𝐷𝑥
𝜇

𝕗(𝑥) =𝑘
𝐶 1

Γ(𝑚−𝜇)

𝑑𝑚

𝑑𝑥𝑚 ∫ (𝑥𝜏)𝑚−𝜇−1𝕗(𝜏)𝑑𝜏
𝑥

0
   (5) 

Definition 4 The Mittag-Leffler is defined as   

 𝐸𝜉 = ∑
𝑧𝑘

Γ(𝜉𝑘+1)
, 𝜉 > 0 , 𝑧∞

𝐾=0 𝜖 𝐶, 𝑘 = 0,1, …    (6) 

 

II. FRACTIONAL OPTION PRICING MODEL 

The Fractional Black-Scholes Model improves upon the conventional Black-Scholes Model by 

incorporating fractional calculus, which enables a more accurate representation of stock price movements 

over time, particularly in the presence of long memory or persistent behaviors. This model accounts for non-

integer variations in asset returns, which the original model overlooks, leading to more precise pricing and risk 

management strategies, especially for assets with persistent volatility clustering and non-Gaussian 

characteristics. 

Based on a replicating portfolio that ensures no arbitrage opportunities are allowed, a fractional Black-Scholes 

option can be derived. In the following, we state:  

 

Proposition 2.1: Let a generic payoff function G(t) = I (S , t). Then the partial differential equation associated 

with the price of the derivative on the stock price is 
𝜕𝑖

𝜕𝑡
+   𝑅𝜎2𝑆2𝑡2𝑅−1 𝜕2𝑖

𝜕𝑆2 + 𝑟𝑆
𝜕𝑖

𝜕𝑆
− 𝑟𝑖 = 0,         S > 0,   t> 0,                                     (7) 

  𝑅 ∈ (0 ,1), 𝑅 ≠  
1

2
. 

Where 𝑖 is the call option price,t is the time to maturity, H is the Hurst exponent, σ is the volatility , S is the 

stock price and r is the discount rate. 

Proof: The stock price S follows the fractional Brownian motion process 

𝑑𝑆 =  𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝐵H (t).              (8)  

The wealth of an investor   𝑋𝑡 follows a diffusion process given by  

𝑑𝑋 =  ς𝑑𝑆 + 𝑟(𝑋 − ς𝑆)𝑑𝑡.         (9).                                               

Putting equation (8) into equation (9) yields 

𝑑𝑋 − {𝑟𝑋 +  ς𝑆(𝜇 − 𝑟)}𝑑𝑡 − ς𝑆𝜎𝑑𝐵𝑅 (𝑡) =  0 .                  (10) 

 Where 𝜇 –r is the risk premium. Suppose that the value of this claim at time t is given by  

𝐺(𝑡) = 𝑖(𝑆, 𝑡),𝑆 = 𝑆𝑡 .                      (11) 

Applying the Ito’s formula for fractional Brownian motion on equation (11), we have  

𝑑𝐺 =  
𝜕𝐼

𝜕𝑡
𝑑𝑡 +  

𝜕𝐼

𝜕𝑆
𝑑𝑆 + 𝑅𝑡2𝑅−1 𝜕2𝐼

𝜕𝑆2 (𝑑𝑆)2.                                      (12)                                      

Substituting (8) in (12), we have  

𝑑𝐺 =  
𝜕𝐼

𝜕𝑡
𝑑𝑡 +  

𝜕𝐼

𝜕𝑆
[𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑅(𝑡)] + 𝑅𝑡2𝑅−1 𝜕2𝐼

𝜕𝑆2
[𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑅 (𝑡)]2.                              (13)                          
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⇒  𝑑𝐺 =  
𝜕𝐼

𝜕𝑡
𝑑𝑡 +  

𝜕𝐼

𝜕𝑆
[𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑅(𝑡)] + 

                       𝑅𝑡2𝑅−1 𝜕2𝐼

𝜕𝑆2
[𝜇2𝑆2(𝑑𝑡)2 + 2𝜇𝜎𝑆2𝑑𝑡𝑑𝐵𝑅 (𝑡) + 𝜎2𝑆2(𝑑𝐵𝑅 (𝑡))2].                               (14)                                    

Multiplication rule implies: 

(𝑑𝑡)2 = 0; (𝑑𝐵𝑅 (𝑡))2 = 𝑑𝑡 

Thus (14) reduces to  

                              𝑑𝐺 =  
𝜕𝐼

𝜕𝑡
𝑑𝑡 + 

𝜕𝐼

𝜕𝑆
[𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑅 (𝑡)] + 𝑅𝑡2𝑅−1𝜎2𝑆2 𝜕2𝐼

𝜕𝑆2 𝑑𝑡.                           (15) 

Collecting like terms we have  

                              𝑑𝐺 = [
𝜕𝐼

𝜕𝑡
+ 𝜇𝑆

𝜕𝐼

𝜕𝑆
+ 𝑅𝑡2𝑅−1𝜎2𝑆2 𝜕2𝐼

𝜕𝑆2
] 𝑑𝑡 + 𝜎𝑆

𝜕𝐼

𝜕𝑆
 𝑑𝐵𝑅 (𝑡)                        (16) 

 

Using (11) we have; 

𝑑𝐼 =  [
𝜕𝐼

𝜕𝑡
+ 𝜇𝑆

𝜕𝐼

𝜕𝑆
+ 𝑅𝑡2𝑅−1𝜎2𝑆2 𝜕2𝐼

𝜕𝑆2
] 𝑑𝑡 + 𝜎𝑆

𝜕𝐼

𝜕𝑆
 𝑑𝐵𝑅(𝑡).                              (17) 

 

Thus, equating coefficients, we have  
𝜕𝐼

𝜕𝑡
+ 𝜇𝑆

𝜕𝐼

𝜕𝑆
 𝑅𝜎2𝑆2𝑡2𝑅−1 𝜕2𝐼

𝜕𝑆2 = 𝑟𝐼 + Λ𝑡𝑆(𝜇 − 𝑟)            (18) 

and 

𝜎𝑆
𝜕𝐼

𝜕𝑆
= ς𝑡𝜎𝑆                            (19) 

or 

ς𝑡 =
𝜕𝐼

𝜕𝑆
.          (20)                                                               

Substituting equation (20)  into (18), we have 
𝜕𝐼

𝜕𝑡
+ 𝜇𝑆

𝜕𝐼

𝜕𝑆
 𝑅𝜎2𝑆2𝑡2𝑅−1 𝜕2𝐼

𝜕𝑆2 = 𝑟𝐼 + 𝑆𝜇
𝜕𝐼

𝜕𝑆
− 𝑆𝑟

𝜕𝐼

𝜕𝑆
                                    (21) 

This implies equation (2) as required. 

 

III. The Solution of Equation (2) using Laplace transforms method 

To derive the formula for the worth profile at each node of the tree, we begin by simplifying the Black-Scholes 

option pricing equation, which is modelled by fractional Brownian motion, into a one-dimensional heat 

equation. We then solve this equation using the Laplace transform method. Subsequently, we state: 

Proposition 3.1: Let equation (7) be given by 
𝜕𝐼

𝜕𝑡
+ 𝑅𝑡2𝑅−1𝑆2𝜎2 𝜕2𝐼

𝜕𝑆2 +  𝑟𝑆
𝜕𝐼

𝜕𝑆
− 𝑟𝐼 = 0, 𝑆 > 0, 𝑡 > 0; 𝐼(0, 𝑡)  =  0, 𝐼(𝑆 , 𝑡) ~𝑆 as               S→ ∞,

𝐼(𝑆, 𝑡) = max{|S − K|, 0}               (22) 

Then (22) can be reduced to one-dimensional heat equation of the form 
𝜕𝑢

𝜕𝜏
= 𝑝

𝜕2𝑢

𝜕𝑥2.    (23) 

Proof: Set  

𝜏 =
𝜎2(𝑇−𝑡)

2
, 𝑥 = ln (𝑆/𝐾)   (24)  

and 

𝐼(𝑆, 𝑡)  =  𝐾𝐼(𝑥, 𝜏).     (25) 

Differentiating (24) and (25), we have 

 
𝜕𝐼

𝜕𝑡
= 𝐾

𝜕𝐼

𝜕𝜏
 .

𝜕𝜏

𝜕𝑡
= (𝐾

𝜕𝐼

𝜕𝜏
) (−

𝜎2

2
),      (26) 

 

 
𝜕𝐼

𝜕𝑆
= 𝐾

𝜕𝑖

𝜕𝑥
 .

𝜕𝑥

𝜕𝑆
= 𝐾

𝜕𝑖

𝜕𝑥
(

1

𝑆
) =

𝐾

𝑆

𝜕𝑖

𝜕𝑥
, (27)    

 
𝜕2𝐼

𝜕𝑆2 =  
𝜕

𝜕𝑆
(

𝜕𝐼

𝜕𝑆
) =

𝜕

𝜕𝑆
(

𝐾

𝑆

𝜕𝑖

𝜕𝑥
) =

𝐾

𝑆
(

𝜕

𝜕𝑆

𝜕𝑖

𝜕𝑥
) +

𝜕𝑖

𝜕𝑥
(

𝜕

𝜕𝑆

𝐾

𝑆
) 

=
𝐾

𝑆
(

𝜕

𝜕𝑆

𝜕𝑖

𝜕𝑥
) +

𝜕𝑖

𝜕𝑥
(

−𝐾

𝑆2
)= 

𝐾

𝑆
[

𝜕

𝜕𝑥
(

𝜕𝑖

𝜕𝑥
)

𝑑𝑥

𝑑𝑆
] −

𝐾

𝑆2

𝜕𝑖

𝜕𝑥
=  

𝐾

𝑆

𝜕2𝑖

𝜕𝑥2
(

1

𝑆
) −

𝐾

𝑆2

𝜕𝑖

𝜕𝑥
. 
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Therefore  
𝜕2𝐼

𝜕𝑆2 = −
𝐾

𝑆2

𝜕𝑖

𝜕𝑥
+

𝐾

𝑆2

𝜕2𝑖

𝜕𝑥2.    (28)  

The terminal condition is 

𝐼(𝑆, 𝑇) = 𝑚𝑎𝑥{|𝑆 − 𝐾|, 0}=max{|𝐾𝑒𝑥 − 𝐾|, 0}. 

Let 

𝐼(𝑆, 𝑇) = 𝐾𝑣(𝑥, 0) 

⇒ 𝑖(𝑥, 0) =max{|𝑒𝑥 − 1|, 0}              (29)                                                

Substitute (26), (27) and (28) in (22) and get 

(𝐾
𝜕𝐼

𝜕𝜏
) (

𝜎2

2
) + 𝑅 (𝑇 −

2𝜏

𝜎𝑧
)

2𝑅−1

𝑆2𝜎2 (−
𝐾

𝑆2

𝜕𝑖

𝜕𝑥
+

𝐾

𝑆2

𝜕2𝑖

𝜕𝑥2
) + 𝑟𝑆 (

𝐾

𝑆

𝜕𝑖

𝜕𝑥
) − 𝑟𝐾𝑖 = 0.       (30)                       

Let (the correlation coefficient)   

𝑚 =
2𝜏

𝜎2,                                (31) 

then we have  

−
𝜎2

2

𝜕𝑖

𝜕𝜏
+ 𝑅(𝑇 − 𝑚)2𝑅−1𝑆2𝜎2 (−

1

𝑆2

𝜕𝑖

𝜕𝑥
+

1

𝑆2

𝜕2𝑖

𝜕𝑥2
) + 𝑟𝑆 (

1

𝑆

𝜕𝑖

𝜕𝑥
) − 𝑟𝑣 = 0 ,   (32) 

and 

−
𝜎2

2

𝜕𝑖

𝜕𝜏
+ 𝑅(𝑇 − 𝑚)2𝑅−1𝜎2

𝜕𝑖

𝜕𝑥
+ 𝑅(𝑇 − 𝑚)2𝑅−1𝜎2

𝜕2𝑖

𝜕𝑥2
+ 𝑟

𝜕𝑖

𝜕𝑥
− 𝑟𝑖 

= −
𝜎2

2

𝜕𝑖

𝜕𝜏
+ 𝑅(𝑇 − 𝑚)2𝑅−1𝜎2

𝜕𝑖

𝜕𝑥
− 𝑟

𝜕𝑖

𝜕𝑥
− 𝑅(𝑇 − 𝑚)2𝑅−1𝜎2

𝜕2𝑖

𝜕𝑥2
+ 𝑟𝑖 

=
𝜎2

2

𝜕𝑖

𝜕𝜏
+ [𝑅(𝑇 − 𝑚)2𝑅−1𝜎2 − 𝑟]

𝜕𝑖

𝜕𝑥
− 𝑅(𝑇 − 𝑚)2𝑅−1𝜎2

𝜕2𝑖

𝜕𝑥2
+ 𝑟𝑖 

=
𝜕𝑖

𝜕𝜏
+ [2𝑅(𝑇 − 𝑚)2𝑅−1 −

2𝑟

𝜎2
]

𝜕𝑖

𝜕𝑥
− 2𝑅(𝑇 − 𝑚)2𝑅−1 𝜕2𝑖

𝜕𝑥2 +
2𝑟𝑖

𝜎2  .        (33)  

Let 

     𝑝 = 2𝑅(𝑇 − 𝑚)2𝑅−1                ` (34) 

Then one has 

 

                                         
𝜕𝑖

𝜕𝜏
+ (𝑝 − 𝑞)

𝜕𝑖

𝜕𝑥
− 𝑝

𝜕2𝑖

𝜕𝑥2 + 𝑞𝑖 = 0                 (35)  

or 

                                        
𝜕𝑖

𝜕𝜏
= 𝑝

𝜕2𝑖

𝜕𝑥2 + (𝑞 − 𝑝)
𝜕𝑖

𝜕𝑥
− 𝑞𝑖.      (36)    

Furthermore let 

    𝑖(𝑥, 𝜏) = 𝑒𝜉𝑥+𝜓𝜏𝑢(𝑥, 𝜏).        (37) 

Then using the product rule, we have 

                                                 𝑖𝜏 = 𝜓𝑒𝜉𝑥+𝜓𝜏𝑢 + 𝑒𝜉𝑥+𝜓𝜏𝑢𝜏, 

                                                 𝑣𝑥 = 𝜉𝑒𝜉𝑥+𝜓𝜏𝑢 + 𝑒𝜉𝑥+𝜓𝜏𝑢𝑥  

and 

                                           𝑣𝑥𝑥 = 𝜉2𝑒𝜉𝑥+𝜓𝜏𝑢 + 2𝜉𝑒𝜉𝑥+𝜓𝜏𝑢𝑥 + 𝑒𝜉𝑥+𝜓𝜏𝑢𝑥𝑥. 

where 𝑖𝜏  and 𝑖𝑥  stand for the first partial derivative of 𝑖 with respect to 𝜏 and 𝑥 respectively. 𝑢𝜏and𝑢𝑥   stand 

for the first partial derivative of 𝑢 with respect to 𝜏 and 𝑥 respectively. 𝑖𝑥𝑥and𝑢𝑥𝑥   stand for the second partial 

derivative of i and 𝑢 with respect to 𝑥 . 

Substituting into (37), one gets 

𝜓𝑒𝜉𝑥+𝜓𝜏𝑢 + 𝑒𝜉𝑥+𝜓𝜏𝑢𝜏 

=p[𝜉2𝑒𝜉𝑥+𝜓𝜏𝑢 + 2𝜉𝑒𝜉𝑥+𝜓𝜏𝑢𝑥 + 𝑒𝜉𝑥+𝜓𝜏𝑢𝑥𝑥] + (𝑞 − 𝑝)[𝜉𝑒𝜉𝑥+𝜓𝜏𝑢 + 𝑒𝜉𝑥+𝜓𝜏𝑢𝑥]-𝑞𝑒𝜉𝑥+𝜓𝜏𝑢. 

Simplifying one has 𝜓𝑢 + 𝑢𝜏 = 𝑝[𝜉2𝑢 + 2𝜉𝑢𝑥 + 𝑢𝑥𝑥] + (𝑞 − 𝑝)(𝜉𝑢 + 𝑢𝑥) − 𝑞𝑢, 

𝑢𝜏 = 𝑝𝑢𝑥𝑥 + [2𝜉𝑝 + (𝑞 − 𝑝)]𝑢𝑥 + [𝜉2𝑝 + (𝑞 − 𝑝)𝜉 − 𝑞 − 𝜓]𝑢.   (38) 

Choose 

𝜉 =
𝑝−𝑞

2𝑝
and 𝜓 =

−(𝑝+𝑞)2

4𝑝
.   (39) 

Thus (38) is reduced to 
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𝑢𝜏 = 𝑝𝑢𝑥𝑥.     (40) 

Equation (40) is a one dimensional heat equation. One can solve (40) using Laplace  

 

transforms method. 

 

Theorem 3.1: Let the worthprofile 𝑢(𝑥, 𝑡) in each nod (as in figure 1) obey the heat diffusion equation of 

equation (40). 
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) = 𝑝

𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡),     (41)    

such that initial worth distribution 𝑢(𝑥) = 𝑢0. At 𝑡 = 0, the worth at the half end is changed instantaneously 

to 𝑢(0, 𝑡) = 0 and kept at the worth profile for all 𝑡 > 0,Then  

(i)   𝑖(𝑥, 𝜏) = 𝑒𝜉𝑥+𝜓𝜏 𝑥

2√𝜋2𝑅(𝑇−𝑚)2𝑅−1𝑡3
𝑒𝑥𝑝 {− (

𝑥2

4𝑝2𝑅(𝑇−𝑚)2𝑅−1𝑡
+ 𝑡)}, if one assumes a solution for < 0 , and        

(ii).    𝑖(𝑥, 𝜏) = 𝑢0𝑒𝜉𝑥+𝜓𝜏𝑒𝑟𝑓𝑐 (
𝑥

2√2𝑅(𝑇−𝑚)2𝑅−1𝑡
) if > 0.                           

Proof: 

The Laplace of the left-hand side of (41) gives; 

𝐿 (
𝜕

𝜕𝑡
𝑖(𝑥, 𝑡)) = 𝑠𝜙(𝑥, 𝑠) − 𝑖(𝑥, 0)  = 𝑠𝜙(𝑥, 𝑠) − 𝑢0 .                      (42) 

And of the right-hand side: 

𝐿 (
𝜕2

𝜕𝑥2 𝑖(𝑥, 𝑡)) =
𝜕2

𝜕𝑥2 𝜙(𝑥, 𝑠), 

which gives 

𝑠𝜙(𝑥, 𝑠) − 𝑇0 =
𝜕2

𝜕𝑥2
𝜙(𝑥, 𝑠) →

𝜕2

𝜕𝑥2
𝜙(𝑥, 𝑠) − 𝑠𝜙(𝑥, 𝑠) = 𝑢0 

or 
𝜕2𝜙

𝜕𝑥2 −
𝑠

𝑝
𝜙 = 𝑢0.      (43) 

Consider  

𝜙′′ −
𝑠

𝑝
𝜙 = 𝑢0.          (44)    

Then this has the particular integral  

𝜙′′ −
𝑠

𝑝
𝜙 = 0, 

with auxiliary equation 

𝑛2 −
𝑠

𝑝
= 0, 

with 

                                                         𝑛 = ± √
𝑠

𝑝
. 

And from here this is solved by considering cases for 𝑠 = 0, 𝑠 > 0. For 𝑠 < 0, 𝑚isimaginary and the solution for  

        𝜙 = 𝑐1 cos (√
𝑠

𝑝
𝑥) + 𝑐2 sin (√

𝑠

𝑝
𝑥) = 𝑒

√
𝑠

𝑝
𝑥

, 𝑐1 = 𝑐2 = 1.                      (45) 

There should not be a need to consider 𝑠 < 0, as the Laplace variable is usually assumed to be > 0 by 

definition and one has not considered any separation of variables. However, if one considers equation (45) as a 

solution then the inverse transform will give  

                                 𝑢(𝑥, 𝑡) =
𝑥

2√𝜋𝑝𝑡3
𝑒𝑥𝑝 {− (

𝑥2

4𝑝𝑡
+ 𝑡)}.                              (46) 

Combining (46) and (37) gives the worth profile in this case as (using (34)); 

𝑖(𝑥, 𝜏) = 𝑒𝜉𝑥+𝜓𝜏 𝑥

2√𝜋2𝑅(𝑇−𝑚)2𝑅−1𝑡3
𝑒𝑥𝑝 {− (

𝑥2

4𝑝2𝑅(𝑇−𝑚)2𝑅−1𝑡
+ 𝑡)}       (47) 

 

Now set 
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𝐿𝑡(𝑛(𝑥, 𝑡)) = 𝑈(𝑥, 𝑠),  

𝐿(𝑢′′) = 𝐿(𝑢̇) → 𝑈′′(𝑥, 𝑠) =
𝑠

4
𝑈(𝑠, 𝑠) −

1

4
𝑢(𝑥, 0). 

Then (with a sign error),one gets; 

𝜙𝑥𝑥 −
𝑠

𝑝
𝜙+𝑢0 = 0.   (48) 

For each fixed 𝑠, this represents a constant-coefficient second-order linear ordinary differential equation (ODE) 

in 𝑥. The general solution is obtained by summing the general solution to the homogeneous equation. So for 

𝑠 > 0 the solution is given as a sum of 𝑐1𝑒
√

𝑠

𝑝
𝑥

+ 𝑐2𝑒
−√

𝑠

𝑝
𝑥

 and by inspection 𝜙𝓅(𝑥) =
𝑢0
𝑠

𝑝⁄
 is a solution of the 

inhomogeneous equation. 

Using the initial-value theorem for the Laplace transform (𝑓(0) = lim
𝑠→∞

𝑠𝐹(𝑠)) to show that 𝑐1 = 0. The 

boundary condition 𝜙(0, 𝑡) = 0 implies 𝜙(0, 𝑠) = 0 for all 𝑠 > 0, which then implies 𝑐2 =  −
𝑢0
𝑠

𝑝⁄
 . Altogether 

from here we obtain the Laplace transform is 

    𝜙(𝑥, 𝑠) =
−𝑢0𝑝

𝑠
[−1+𝑒

−√
𝑠

𝑝
𝑥

].               (49)  

Next, we invert this Laplace transform. The second term simply results in a unit step function. However, the 

inverse Laplace transform of the first term cannot be expressed in terms of elementary functions. 

Nonetheless, we can express it using the rule: 

    𝐹(𝑠) = 𝑠𝐿 [∫ 𝑓(𝜏)𝑑𝜏
𝑡

0
] (𝑠),       (50)     

which gives  

   𝜙(𝑥, 𝑡) = − (𝑇0 ∫ 𝐿−1 [𝑒
−√

𝑠

𝑝
𝑥

] (𝜏)𝑑𝜏 − 𝑢0𝑢(𝑡)
𝑡

0
).          (51)             

where 𝑢(𝑡) is the unit step function. The inverse Laplace transform in the integral gives  

𝑢(𝑥, 𝑡) = 𝐿−1 [𝑒
−√

𝑠

𝑝
𝑥

] (𝜏) =
𝑥𝑒

−
𝑥2

4𝜏

2√𝑝𝜋𝜏
3
2

,                 (52) 

Making the change of variable 𝜂 =
𝑥

2√𝜏
 or equivalently =

𝑥2

4𝜂2 , 𝑑𝜏 =
𝑥2

2𝜂3 𝑑𝜂 gives  

∫ 𝐿−1 [𝑒
−√

𝑠

𝑝
𝑥𝑥

] (𝜏)𝑑𝜏
−1

0
=

2

√𝑝𝜋
∫ 𝑒−𝜂2

𝑑𝜂
∞
𝑥

2√𝑡

= 𝑒𝑟𝑓𝑐 (
𝑥

2√𝑝𝑡
).     (53) 

Where 𝑒𝑟𝑓𝑐 denotes the complementary error function. Therefore, the solution comes out to 

𝑢(𝑥, 𝑡) =  𝑢0𝑒𝑟𝑓𝑐 (
𝑥

2√𝑝𝑡
) − 𝑢0𝑢(𝑡).  (54) 

To check that this is consistent with the initial and boundary conditions at 𝑡 = 0, 

𝑒𝑟𝑓𝑐 (
𝑥

√𝑝𝑡
) = 0for all 𝑥 > 0, so 𝜙(𝑥, 0) = 𝑢0 for all 𝑥 > 0, 

While at 𝑥 = 0, one can explicitly calculate the value of 𝑒𝑟𝑓𝑐(
𝑠

𝑝
) (It is half of the famous Gaussian Integral) to 

find that 𝑢(0, 𝑡) = −𝑢0 + 𝑢0 = 0. 

Therefore  

 𝑢(𝑥, 𝑡) =  𝑢0𝑒𝑟𝑓𝑐 (
𝑥

2√𝑝𝑡
)  as 𝑢(𝑡) ↑ 0.           (55)                   

Combining (55) and (37) gives the worth profile in this case as (using (34)); 

𝑖(𝑥, 𝜏) = 𝑢0𝑒𝜉𝑥+𝜓𝜏𝑒𝑟𝑓𝑐 (𝑥[2𝑅(𝑇 − 𝑚)2𝑅−1𝑡]−
1

2).  (56)                

 

IV. Sensitivity Analysis for the Skewed Profile and Some numerical examples  

To carry out sensitivity analysis of the worth of a stock using a random pricing tree and the Time-Regular Long 

Wave (TRLW) equation, one would typically follow these steps below: 
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1. Identify Sensitivity Parameters: Determine which parameters or factors are most influential in the valuation 

process. These could include parameters related to the underlying asset (e.g., volatility, dividend yield), market 

conditions (e.g., interest rates, liquidity), or model assumptions (e.g., time regularity parameter in the TRLW 

equation). 

2. Define Parameter Ranges: Specify a range of values for each sensitivity parameter over which you want to 

conduct the analysis. This could involve varying parameters individually or in combination to assess their 

impact on option prices. 

3. Generate Scenarios: Use the random pricing tree approach to generate a set of scenarios reflecting different 

combinations of parameter values within the defined ranges. This may involve simulating multiple paths for 

the underlying asset price based on the specified parameter values. 

4. Calculate Option Prices: For each scenario, use the TRLW equation to calculate the option prices 

corresponding to the generated asset price paths. This may require solving the pricing equation numerically or 

using approximation techniques. 

5. Analyze Results: Analyze the variation in option prices across the different scenarios to assess the sensitivity 

of the option values to changes in the input parameters. This may involve calculating sensitivity measures such 

as delta, gamma, vega, and theta to quantify the impact of each parameter on option prices. 

6. Identify Key Drivers: Identify which parameters have the most significant impact on option prices and how 

their effects vary across different scenarios. This can help in understanding the key drivers of option valuation 

and informing risk management decisions. 

7. Conduct Scenario Analysis: In addition to individual parameter sensitivity analysis, consider conducting 

scenario analysis to assess the impact of specific market events or economic conditions on option prices. This 

could involve simulating extreme market scenarios or stress testing the model under different assumptions. 

8. Validate Results: Validate the results of the sensitivity analysis by comparing them with observed market 

data or benchmark values obtained from alternative pricing models. Ensure that the sensitivity analysis 

accurately reflects the behavior of option prices under different parameter values and market conditions. 

 

By following these steps, you can gain insights into the sensitivity of option prices to changes in key 

parameters and assess the robustness of the valuation framework based on random pricing trees and the 

TRLW equation. 

 

A levy process (𝑖(𝜏))𝜏≥0  with a nonnegative increment is called a subordinator. The Laplace transform of 𝑖(𝜏) 

has the form 𝔼[𝑒−𝜉𝑖(𝜏)] = 𝑒−𝑟𝜑(𝑖), ≥ 0 with the Laplace exponent 𝜑(𝑖) given by 

 𝜑(𝑧) = 𝜓𝑧 + ∫ (1 − 𝑒−𝑥𝑧)𝑑𝜔(𝑥)
∞

0
. 

For any complex 𝑧 with the 𝑅𝑒 𝑧 ≥ 0 ,where𝜓 ≥ 0 is a drift parameter and 𝜔 is a measure satisfying 

∫ min{1, 𝑥}𝑑𝜔(𝑥) < +∞
∞

0
 which is called Levy measure of (𝑖(𝜏))𝜏≥0. 

For 𝜉 ∈ (0,1), the Levy measure of 𝑖𝜉(𝑡) is absolutely continuous with respect to the Lebesque measure on 

(0, +∞) with the density function (as in the set of equations (3-6); 

 

                                                ℎ𝜉(𝑥) =
𝜉

𝛤(1−𝜉)𝑥𝜉+1 , 𝑥 > 0.       (57)    

It therefore suggests that [𝑖𝜔(𝑡)]𝜏≥0 is a stochastic process with Laplace transform;   

𝔼𝑒−𝜇𝑖𝛾(𝜏) = 𝑒−𝜏𝜑𝛾(𝑖),     (58) 

with a subordinator, where 𝜑𝛾(𝑢) ≥ ∫ 𝑖𝑥𝑑𝛾(𝑥)
𝜏

0
 and 𝛾 is a Borel probability measure on (0,1). 

Park & Nguyen (2023) [16] investigated the Black-Litterman (BL) asset allocation model under the assumption of 

a hidden truncation skew-normal distribution. They demonstrated that when returns are assumed to follow 

this skew-normal distribution, the posterior returns, after incorporating views, also follow a skew-normal 

distribution. 
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Let 𝑖 = {𝑖𝑡 , 𝑡 ≥ 0} be a standard Brownian Motion generating a stochastic basis [(𝛺, 𝔽 = (𝔗𝑡 = 𝜎(𝑣𝜉 , 𝜉 ≤

𝑡): 𝑡 ≥ 0, 𝑃)(Li, 2019) [6]. 

Let 𝜉 ∈  (0,1) and set  

𝒜𝑡
(ξ) 

= ∫ ξ2𝐼{is≥0}
𝜏

0
+ (1 − ξ)2I{is≥0}𝑑𝑠, 

𝜏𝑖𝑡
(ξ)

= inf {s ≥  0:  𝒜𝑠
(ξ)

>  𝑡} , 𝑡 ≥ 0, 

i𝑡
(ξ)

= 𝜑𝜉 (𝑖
𝜏𝑡

(ξ)) , 𝑡 > 0, 𝑖0
(ξ)

> 0.  

Where 𝜑ξ(𝑥) = ξxI{x≥0 } + (1 −  ξ)xI{x<0 } , 𝑥 ∈ 𝑅. Then the process 𝕧(𝜉)  =  {i𝑡
(ξ)

, 𝑡 ≥  0} is called a skewed 

Brownian Motion (SBM) with parameter ξ. For every 𝑡 ≥  0, the density 𝑓𝑡
𝜉 (𝑥), 𝑥 ∈  𝑅 of 𝑖𝑡

𝜉(𝑥)  is given by; 

              𝑖𝑡
𝜉(𝑥) = {

𝜉 [𝑢0𝑒𝜉𝑥+𝜓𝜏𝑒𝑟𝑓𝑐 (
𝑥

2√2𝑅(𝑇−𝑚)2𝑅−1𝑡
)] ,          if  x ≥ 0                                               

(1 − 𝜉) [𝑒𝜉𝑥+𝜓𝜏 𝑥

2√𝜋2𝑅(𝑇−𝑚)2𝑅−1 𝑡3
𝑒𝑥𝑝 {− (

𝑥2

4𝑝2𝑅(𝑇−𝑚)2𝑅−1 𝑡
+ 𝑡)} , 𝑖𝑓 𝑥 < 0] 

       (59) 

In order to find the worth of a stock at each point of tree, equation (59) can be written in polar coordinate 

system as;  

      𝑖𝑡
𝜉(𝜔) = {

𝜉 [𝑢0𝑒𝜉𝑥+𝜓𝜏𝑒𝑟𝑓𝑐 (
𝜔 cos 𝜃

2√2𝑅(𝑇−𝑚)2𝑅−1𝑡
)] ,          if  ω ≥ 0                                               

(1 − 𝜉) [𝑒𝜉𝑥+𝜓𝜏 𝜔 cos 𝜃

2√𝜋2𝑅(𝑇−𝑚)2𝑅−1 𝑡3
𝑒𝑥𝑝 {− (

(𝜔 𝑐𝑜𝑠 𝜃)2

4𝑝2𝑅(𝑇−𝑚)2𝑅−1 𝑡
+ 𝑡)} , 𝑖𝑓 𝜔 < 0] 

,          (60)      

 where 𝑥 = 𝜔 𝑐𝑜𝑠 𝜃. 

Equation (60) is the worth profile at each node with the possibilities of up or down nodes of the tree as in 

figure 1b. 

Now assume an expected volume of portfolio at each node of a tree (see figure 1) given values 

𝜏, 𝑚, 𝑝, 𝑞, 𝜉 and 𝜓 as calculated from equations (24), (31), (34) and (39) respectively. Then the worth 

distribution in the volume of portfolio at time,𝑡, at each node is as in figures 2 and 3 below probability up or 

down     

 
Figure 2: Worth profiles of equation (47),for the down nodes of the tree of equation (59). Substituting 

different Values of the Parameters p, q, t, ξ, ψ, r for the 3D Graphs, we calculate the expected value i(x, t)  with 

current price of a stock ω0 = $120 and the expiry date is 363day, the size of the up move ξ = 0.131 and the 

risk free rate r = 0.09.  We use a binomial tree, to determine the current worth of the option. Herein, we 

determine the probability for stock price upturn uniquely as Pξ =
1

2
+

|ξ−
ψ2

2
⁄ |

ψ
√∆t, Pξ = 0.521, Pψ =

0.479,   ψ = 0.242, wherePξ,     Pψ = 1 − Pξare the probabilities of up or down nodes of the tree as in figure 1b 

and ∆t = 0.05. 
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Figure 3: Worth profiles of equation (56), for up node of the tree of equation (60). Substituting different Values 

of the Parameters 𝑝, 𝑞, 𝑡, 𝜉, 𝜓, 𝑟 for the 3D Graphs, we calculate the expected value 𝑖(𝑥, 𝑡)  with current price 

of a stock 𝜔0 = $120 and the expiry date is 363day, the size of the up move 𝜉 = 0.131 and the risk free rate 

𝑟 = 0.09.  We use a binomial tree, to determine the current worth of the option. Herein, we determine the 

probability for stock price upturn uniquely as 𝑃𝜉 =
1

2
+

|𝜉−
𝜓2

2
⁄ |

𝜓
√∆𝑡𝑃𝜉 = 0.521, 𝑃𝜓 = 0.479,   𝜓 = 0.242, 

where 𝑃𝜉 ,     𝑃𝜓 = 1 − 𝑃𝜉are the probabilities of up or down nodes of the tree as in figure 1b and ∆𝑡 = 0.05. 

 

Figures 4(a,b) below is the relationship between the optimal worth control strategy and control coefficient, 𝑃 

and control policies, 𝑞 with varying risk over time, for all other parameters remain fixed. It is observed that the 

investment portfolio in the risky asset is positive. 

    

Figure 4(a, b): The effect of control coefficient, 𝑃 and control policies, 𝑞 on the Spatial profile of worth 

concentration after 365, 1000 and 3000days. 

  

V. Conclusion 

In this study, the Laplace transform proved instrumental in establishing the existence of a unique 

solution for the heat partial differential equation incorporating stochastic variables. The transformed equation 

was formulated in terms of volatile parameters, which significantly influence the system. These effects were 

meticulously scrutinized through numerical simulations. The objective of deriving a fractional formula for the 

profile of worth option payoff, with the goal of analyzing the deposit at each node of a tree within the 

framework of a binomial tree insurance model, was successfully achieved. 

The optimal portfolio derived through this method demonstrates lower risk compared to an optimal portfolio 

from the classical Black-Scholes (B-S) model. As the expected returns of portfolios increase, the optimal 
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portfolio becomes more negatively skewed. This implies that investors are willing to trade negative skewness 

for a higher expected return. Additionally, there may be a negative relationship between portfolio volatility 

and portfolio skewness, indicating that investors might choose between lower volatility and higher skewness. 

This trade-off suggests that stocks with substantial price declines tend to have increased volatility. 
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