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ABSTRACT: The oil industry has evolved, in recent times, the increased need for petroleum products as well as
the exploitation of shallower wells has made drillers to start considering deep offshore regions and other
regions hitherto considered “undrillable”. One of such difficult to drill region prior to now are wells with narrow
drill margins, however with the advent of MPD, this wells can now be safely harnessed. This paper focuses on
optimizing the efficiency of the CBHP variant of MPD. The CBHP-MPD aims to achieve constant BHP throughout
drilling process by manipulating SBP as required to supplement or counter the Frictional losses ensuring the
BHP remains steady all through the drilling process. Therefore accurate SBP requires that accurate Frictional
losses be determined. In this project, we will be determining the frictional loss using a stepwise Linear
Regression and then using the frictional losses so obtained in supplying adequate surface back pressure for
steady BHP management throughout the entire drilling process of this delicate MPD wells.

Keywords: Annular friction loss, Surface back pressure, managed pressure drilling, stepwise multiple linear
regression.

l. INTRODUCTION

Managed Pressure Drilling, a seemingly old reformed conventional drilling technique which refers to all
methods of drilling that focuses on efficient management of the bottom hole pressure is a very potent tool in
drilling safely and efficiently these days, considering that majority of the wells that are been exploited are
wells requiring stringent pressure management, MPD has prospered with several variants like the Pressurized
Mud Cap Drilling- PMCD which seeks to monitor the pressure by simulating an overburden formation weight
using pressured drilling fluid just above the drilled region like a cap, giving it the name pressurized mud
cap.There is also an Equivalent Circulating Density MPD which seeks to maintain the drilling pressure by ECD
manipulations. However this project focuses on the Constant Bottom Hole Pressure Managed Pressure Drilling
Variant, CBHP-MPD, which seeks to maintain steady drilling pressure by achieving constant bottom hole
pressure. The pressure at the bottom of the hole (BHP) is due to several factor, first, the hole is filled with a
column of fluid called the drilling mud, therefore the BHP is a function of the hydro-static pressure of the mud
in the hole, furthermore, there are pressures surges and swabs that arises due to friction as circulation of the
fluid increases or is halted, increasing or reducing the Hydro-static Pressure consequently producing an overall
increased BHP. However because the frictional losses are unsteady, the BHP shall be unsteady, this means that
achieving constant BHP would involve canceling out the effect of the pressure fluctuations arising from the
frictional losses. This is achieved in CBHP-MPD by introducing another pressure called the surface back
pressure, SBP. The SBP is a fall back pressure that act as an additive inverse to the frictional pressures this
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implies that when there's an increase or a decrease in the frictional pressure, the SBP will be reduced or
increased respectively by exactly the same amount of the frictional pressure increase, annulling the overall
effect of the increased pressure consequently a constant Bottom Hole Pressure is achieved and maintained all
through the drilling process.

This means the efficiency of the CBHP-MPD is determined by the accuracy of the applied Surface Back
Pressure, SBP which is just a reflective of the accuracy of the frictional loss estimation. Fares (2018). This is
where the need for a model to accurately estimate the frictional loss in the drilling fluid and the well-bore
annular geometry arises. Determining the frictional losses in the annular geometry of the well-bore prior to
this paper is done using models which requires high level of computations. Models like the Herschel Buckley,
API-13D and the Power law models are the widely used model in petroleum industry. Furthermore the drilling
fluid being a complex mixture of several components exhibits rheological behaviour which cannot be
accurately modeled because it exhibits different rheological properties under different conditions, for instance
every good drilling fluid should possess a gelling or thixotropic properties at quiescent which is required to
suspend drilled cuttings from slipping during periods of no circulations and should behave like a fluid under
conditions of plasticity making the drilling fluid difficult to be modeled exactly using a single fluid model.
Furthermore the current drilling fluid models do not directly model the annular frictional loss but requires
tedious indirect computations of other parameters, therefore this project seeks to produce a model that
computes the frictional pressure losses directly as a function of the drilling fluid parameters.The Stepwise
Linear regression model (SLRM) is a new breed of regression models, They function like an hybrid, in the sense
that the SLRM possesses the simplicity of the linear model yet potent in estimating any nonlinear trend with
proper knowledge of it application. SLRM was developed to aid estimation of non linear trend using a linear
regression, this regression model seeks to accurately fit nonlinear trends yet maintaining the simplicity of a
linear model. To estimate a nonlinear trend using a linear model, the SLRM employs the fact that a curve is
basically made up of infinite small straight lines, therefore the SLRM breaks down the curved sections
accurately modeling these sections by series of straight lines giving the SLRM efficiency and unmatched
accuracy in modelling non linear trends.

1. Materials and Methods

In parameters selection, from comprehensive research from previous literature, it's determined that
friction in fluid is affected by certain properties of the fluid and the conduit through which the fluid flows. The
four most stringent fluid and flow properties was selected for this study. Bern.et al (2006) agreed that the
frictional loss is affected by the mud weight. The frictional loss is also affected by a flow property termed the
annular diameter of the pipe or the hole containing the drilling fluid, for friction is the resistance in motion due
to shearing stress in liquids, this shearing stress is always inversely affected by the effective flow area such
that the smaller the pipe or conduit, the smaller the effective flow area leading to increased shearing stresses
in the fluid.The rate at which the fluid is flowing through the conduit will also determine the shearing stress,
for the shearing stress is directly related to the pressure of the fluid and at higher flow rates the fluids pressure
is higher, therefore the shearing stress will be higher assuming constant effective flow area. Finally, the
effective area of the pipe is also determined by the effective length of the pipe, translating this in petroleum,
this will be the effective length of the hole section which is the depth as measured from a standard or
reference elevation like the KB or DFE . Therefore the Model will be built on these four parameters. The SLRM
involves the conventional linear modeling carried out in a predetermined number of steps. In generating this
model, data was obtained from an MPD candidate Oil well in Niger Delta field, the name of the well withheld
for confidential purposes.The data comprises over a thousand data points of real time drilling data at depth
interval of (12800-13464)ft. This depth was characterized by very close drill windows hence the need for the
CBHP-MPD intervention. The data includes properties like frictional loss, mud-weight, flow rate, depth, plastic
viscosity etc. First, only the required parameters were mined from the data, which are the frictional loss, mud-
weight, depth, flow-rate and effective annular diameter parameters. Afterwards, because real time data
comprises several data points in a fraction of a second, it is difficult working with as you have clusters of data

81 www.iarjournals.com


https://iarjournals.com/
file:///C:/Users/hp_at/Downloads/www.iarjournals.com

American Journal of Sciences and Engineering Research wwwwe.iarjournals.com

at one point, which means the trend will not be visible, therefore statistical averaging using time trend analysis
was carried out on the real time drilling data, smoothening the data to a representative 40 data points suitable
for the linear modeling.The SLR modelling is carried out using a step of 4 points, for a 40 data point, this
translates into 10 steps and then a sample of the modelling procedures is carried out on two of the steps as
shown below. This modeling process is repeated to cover all the data. In this model, the independent variables
are outlined below:

Mw = Mud-weight [Ibs/cu-ft], Qo = flow-rate [cu-ft/s], D= True vertical Depth [ft], Da= Annular diameter [ft], FI
= Frictional loss [psi]

The value of the frictional loss would be modeled as a function of all these variables, therefore:

FI = f(Mw, Qo, D, Da) 1)

For a linear model, assuming no frictional loss at conditions of no flow with a drilling fluid of zero Ib/cu-ft mud-
weight at a footage of zero foot and in a well-bore with effective annular diameter of zero:

Fl=b0MW +b1Q0+b2D+b3Da (2)
With by,b;,b, and b as constants whose value shall be determined in the following steps.

1. Generating the normal equations, we obtain the following equations:

Sh=n Ym0, Y a0, Yoan Yo @

S =, 3 bt by ot +, 3 v by Yo (8
S h0=bo Y Mo +b Y 0t +b, Y pao b, Yace  5)
S 00 =b, 3 wba +b, Y aoba b, Yobas b, Yot (0

2. Translating equations 3,4,5 and 6 into matrices using matrix notation:
The General format is:
b.X = C

With b = the vector of the to be determined constants,

X = the matrix of the drilling parameters (Mw, Qo, D, Da)
C = Matrix of the left hand side constants.

Z; ZMWQO ZQOZ ZDQO ZDaQo B ZFI.QO @

3. To obtain this sums in the matrix above, the regression table is prepared using a multiple regressor
statistical tool developed specifically for this project, screenshot of the regression output is displayed below :
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FILE IPTIONS DATA MULTIPLE LINEAR REGRESSOR
954,504 3225905 2188088 953 128773 1002 3385 2296 100.4004 11458225 5271616
1065344 5838.28 1344,16 8l.2 28942 168 |72.1344 516%.61 28224
13959834 8583.267 1795752 10689 129134 168 170,564 644807 28224
1346.5535 ; 1761816 10487 129332 168 1703025 6115.24 28224

47847869  25848.286 7109816 38826 516181 4925 26425 7336 6134009 18878.7625 13738816

336404 15117723 211389 273 133856 148 4651 93 219.04 44235801 B4 49
11092.14 51611249 6710.06 6847 134062 182 7547 98 26244 57259489 go.04
12499.1136  40748.448 7579908 77346 13425 1606 783 98 261.1456 6209.44 76.04
120164075  58593.9375 729169 74405 134445 1615 TBTS 98 2608225 6201.5625 $6.04
1133601 53783.347 6900.18 704.1 13464 161 T6.87 ?8 259.21 5878.2889 96.04
503077111 2404549045 30595728 3133.61 671253 7941 3744 485 1262,6581 28438.8204 470.65

Figure 1: Multiple linear regression statistical tool output

The statistical tool reads data in excel format and is designed to perform regression modelling in steps, the
output of the sums are generated and displayed in matrix format as shown below.

bo 493 2643 51618.1 734 388.2
b1‘ I 613.4 3551.7 635629.7 889 | _ |4784.8
b,||3551.7 18878 3411311 4648 25848
b, 889 4648 946508 1374 7109.8

The results for the unknown coefficients is obtained as displayed below.

b, 0.644
b,| _|-0.0018
4 ‘[ 0.007
bs —0.013

Substituting the values for the coefficients in equation 2, the frictional loss model for the first step is obtained
as shown below.

F1 = 0.644Mw — 0.0018Qo + 0.007D — 0.013Da

1l. Results and Discussion

The annular frictional loss predictions from the generated model is compared with the actual data for
the first step, the standard error is also computed and the result displayed on a graph as shown below.

Table 1. Model prediction against actual annular friction losses

AFL [ Field data] (psi) AFL [Model] (psi) Standard Error (%)
95.3 93.7 1.67

81.2 83.5 4.30

106.8 102.3 -4.20

104.9 107.1 2.09
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Figure 2. Graphical plot of model estimation against field data friction loss.

In the plot above, the blue trend line indicates the obtained annular pressure loss from field data, whilst the
solid orange trend line dictates the generated model frictional loss predictions. The plot reveals precise
estimation of the frictional losses by the model.

The generated frictional loss model is also compared against other existing models, two model was employed:
the Herschel Buckley and the API-13D model. The reason for the choice of this two is that based on previous
literature, these two models have been proven to yield a higher accuracy in annular frictional loss prediction
for drilling fluids (oriji et marcus 2014). The result is displayed in tabular form with graphical output as seen
below.

Table 2. Model against HB and API-13D friction loss estimation.

AFL [ Field data] (psi) AFL [Herschel Buckley] | AFL [ API-13D] (psi) AFL [ Madel] (psi)
(psi)

853 454 755 837

81.2 oB.9 69.9 83.5

106.8 65.3 987 1023

1045 586 BEE 1071
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Figure 3. Comparison plot of SLR model with preexisting models

In this plot, the solid blue trend line dictates the annular frictional pressure loss obtained from the field data,
the bright yellow colored trend line dictates the generated model annular frictional losses predictions with the
ash and Orange trend line indicating the API-13D and the Herschel Buckley's model predictions respectively.
Obviously, the annular frictional loss model generated produced a better fit to the field data than the API -13D
and Herschel Buckley's. Furthermore, the model shows the least variability in it's predictions, ranking it the
most accurate amidst the three models.

V. Conclusion

As proven by the results of this project, the stepwise linear regression model, SLRM is potent in
estimating and forecasting nonlinear trends, with an accuracy of 95% in it prediction of the annular friction
losses, with a maximum standard error as low as 5% , it clearly performs better than the API-13D and the
Herschel Buckley models in frictional loss prediction, which implies it has the potential to achieve the aim of
ensuring constant BHP as adequate SBP can be supplied in real time using the model’s prediction.Furthermore,
the methods employed in this model can be used in any geography however adequate correction factors may
be included based on the region using data from the region.Finally, the SLRM is generally suitable for
modelling nonlinear trends and curve fitting.

Nomenclature

API American Petroleum Institute
AFL Annular Frictional Losses
BHP Bottom Hole Pressure
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CBHP Constant Bottom Hole Pressure
DFE Drill Floor Elevation

ECD Equivalent Circulating Density

HB Herschel Buckley

KB Kelly Bushing

MPD Managed Pressure Drilling

PMCD Pressurized Mud Cap Drilling

SBP Surface Back Pressure

SLRM Stepwise Linear Regression Model
SPP Stand Pipe Pressure
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