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Abstract: Power flow is an essential computational tool in planning and operation of power systems. It is used 

to determine the steady-state electrical state of the network so as to reduce the residual error of the active and 

reactive power to zero. This paper presents a method for solving the power flow problem by the fourth order 

Runge - Kutta method. This method makes it possible to calculate the voltages at the different buses, the 

electric currents, the active and reactive powers supplied by each source and the transits of the active and 

reactive powers in the lines. The fourth order Runge - Kutta method is obtained by making the analogy between 

the Newton - Raphson method and the explicit Euler numerical integration method. The simulations were 

performed using Matlab for the test cases of IEEE 9-bus, 14-bus, 30-bus, 57-bus, and 118-bus systems. The 

results obtained were compared with the Gauss-Seidel and Newton-Raphson methods for the number of 

iterations, computational time, tolerance value, and convergence error. The results of analyses show that the 

Runge - Kutta method is efficient and excellent in the case of large-scale well-conditioned systems. 

 

Keywords: Gauss – Seidel, Newton – Raphson, Runge – Kutta, Power-flow analysis, well– conditioned systems  

----------------------------------------------------------------------------------------------------------------------------- ---------------------- 

 

I. Introduction 

In an electrical transmission system, energy flows from the generator to the load via different lines in 

the power system. Power Flow (PF) calculation is an important tool for the manager and operator of the 

electric power system. It provides a view of the network infrastructure in order to reinforce, modify and adapt 

the network according to consumption [1]. The objective of PF analysis is to determine the complete electrical 

state of the network in steady state, i.e. the voltages in all the buses, the transits of active and reactive powers 

in all the lines, the line losses, etc. from the consumptions and productions specified in these buses. 

PF equations are non-linear and must be solved by iterative techniques using numerical methods. 

Solving these equations has led many researchers to find simpler and faster numerical methods in order to 

improve their convergence rate, reduce the computing time and save some computer memory. During the last 

three decades, many methods have been used to solve the PF problem [2]. The most commonly used iterative 

methods are the Gauss-Seidel (GS) and Newton-Raphson (NR) methods [3,4]. However, with the industrial 

development in the society involving the increase of the large power systems to be processed, some methods 

fail to converge to a correct solution. 

In this paper, we focus on the Runge-Kutta method of order 4 (RK4). This method of solving the power 

flow problem is based on the analogy between the NR method and the ordinary differential equations. 
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Simulation results of the RK4 method are compared with the traditional methods GS and NR for the IEEE 9-bus, 

14-bus, 30-bus, 57-bus and 118-bus systems. 

 

II. Materials and Method 

2.1 Bus classification 

A bus in power system is a busbar to which one or more transmissions lines, loads and generators are 

connected. In power system, the buses are associated four quantities like voltage magnitude V , the phase 

angle of voltage θ , active power P and reactive power Q [5,6]. In load flow, only two of these four quantities 

are known at a bus, the other two must be determined during the calculation [7,8]. The classification of power 

system buses into three categories based on the variables used as shown in Table 1. 

 

Table 1. Classification of power system buses 

Bus code Bus Type Notation Know variables Unknow variables 

1 Reference bus Slack bus V , θ  P, Q  

2 Generator bus  PV bus P, V  Q, θ  

3 Load bus  PQ bus P, Q  V , θ  

 

2.2 PF problem and well-conditioned cases 

The PF analysis is used to determine the complex voltages of the power system at different bus, the powers 

transited from one bus to another, the injected powers at a bus, and the active and reactive losses power [9]. 

The first step in power flow calculation is to formulate the admittance matrix of the power system using data 

from transmission lines, capacitors, and transformers. The solution of the steady state power flow problem is 

based on the following linear equation system: 

 I Y V                  (1) 

where I is the complex vector of the bus currents injection; Y is the matrix of complex admittances and V is the 

complex vector of nodal voltages. 

The net complex apparent power and current injection into any bus (k) can be expressed, respectively, by the 

following equation: 
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where, kS is the complex net injected power into the kth bus, kV  is the complex voltage at kth bus, kI  is the 

current injected at kth bus, 
*

kI  is the conjugate of kI , N  is the total number of bus bars,  kjG  and kjB  the 

real and imaginary parts of the admittance elements kjY , kV  is the voltage magnitude at kth bus, and  k  is 

the voltage angle at kth bus. 

This equation shows that the active and reactive powers injected at the bus are a function of the magnitude 

and angle of the voltages at the other bus. Equations (3) and (4) represent the PF equations at kth bus of a 

power system [10]. 
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where, kP  and kQ  are the net active and reactive powers injected into the bus k , GkP  and GkQ  are the 

active and reactive powers supplied by the generators to the bus k , DkP  and DkQ  are the active and reactive 

powers consumed by the loads connected to the bus k , and kj  is the angle between the complex voltages 

kV  and jV . 

When the PF equations are well-conditioned, the PF solution exists and is reachable using a flat initial guess. 

For example, all load voltage magnitudes equal to 1 and all bus voltage angles equal to 0 in bus system.  

Indeed, the PF solution can be easily found by using conventional solvers, such as, Gauss-Seidel and Newton-

Raphson methods [11]. The well-conditioned cases are still the most common situation. 

Regarding the PF analysis, the analytical resolution of the nonlinear equations that relate the nodal voltages 

with the power injections is very difficult. For this reason, many iterative numerical methods are suitable in the 

literature to solve the PF problem [12,13]. In this paper, three such as methods are studied for solving the PF 

problem: the Gauss-Seidel, Newton-Raphson and Runge - Kutta. 

2.3 Gauss-Seidel method  

The Gauss-Seidel (GS) method is one of the simplest iterative methods used for solving nonlinear power flow 

equations [14,15]. This method consists of successively calculating the voltage at each bus of the network. For 

the PQ bus, the real and reactive powers are known. Thus, if the initial bus voltage is given, we can use the 

equation (5) to perform the iteration calculation [16]. 
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 For the PV bus, only active power injection and magnitude voltage are specified and the reactive power 

injection is unknown. Therefore, the injected reactive power is calculated by the following equation: 
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During the iteration process, if the calculated value of reactive power does not violate any of the specified 

limits, then the voltage angle can be determined by equation (7). However, if the calculated value of reactive 

power violates one of the specified limits, then the corresponding PV bus is treated as the PQ bus. The 

convergence of the system is reached when the condition specified in equation (8) is satisfied. 
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2.4 Newton- Raphson method 

The PF problem can also be solved by the Newton-Raphson method. This method allows to strongly reducing 

the computational time of the PF problem, especially for large power system. However, it requires more 

mathematical calculations and consequently more computational time per iteration than the Gauss-Seidel 

method, while it converges more quickly even for large-scale well-conditioned system [17]. The active and 

reactive injected powers at each bus of the power system can be expressed by equation (9). 
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These power equations are nonlinear and can be solved using the Taylor series and using the first-order series 

approximation [18]. The Jacobian matrix gives the relationship between small changes in magnitude V and 

angle   of voltage and small changes in active P and reactive power Q  .  
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In equation (10), the Jacobian matrix is also denoted as follows: 
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The Jacobian matrix J contains the partial derivatives of the active and reactive powers with respect to the 

angles and the magnitudes of the tensions. The elements of this matrix are the partial derivatives of the active 

and reactive powers, evaluated at
( )h

k  and 
( )h

kV . Solving the linear system of equation (10) provides the 

vectors   and V , which can be written in the following reduced form: 
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The terms 
h

kP and
h

kQ are the difference between the scheduled net powers and those of calculated at the 

iteration h , also called the active and reactive powers mismatch, given by equation (13). 
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Each iteration, the voltages magnitudes and angles at all buses are estimated by the equation (14). The 

calculation procedure is repeated until the residual errors for the powers and for all the busbars are within the 

specified tolerances. 
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2.5 Runge – Kutta method  

The Runge-Kutta method is a technique of one-step numerical schemes for numerically solving first Order 

Differential Equations (ODE). Originally, Euler's method is the simplest method for numerically solving 

differential equations. However, the explicit Euler’s method can be numerically unstable, even at variable time 

steps. Given the analogy between power flow equations and ODE, all numerical integration methods can be 

applied to solve PF equations [19]. But, it is necessary to evaluate an efficient integration method to solve 

them. The analogy between the Newton-Raphson method and the forward Euler method used for numerical 

integration is straightforward if function f  is defined as follows: 

    
1

0 0

X
f X J F

t


  


                      (15) 

The estimate of the integral of the function for f a time step of 1 second  Δt=1  can be expressed by the 

following equation: 
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This approach can be extended using the Runge-Kutta numerical integration method of order 4 (RK4)[20]. The 

explicit relationship of the RK4 method is as follows: 
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where t  is a given the time step. The time step can be adjusted according to the estimated truncation error 

of the integration method. Discussions on estimating the truncation error of RK4 are offered in [21]. For the 

RK4 method, the adopted the truncation error is based on the half-step method, as follows: 

  2max k X                              (18) 

In this approach, the equation (19) show the time step can be adjusted based on the following simple heuristic 

rules [20,21]. 

 
 

 

0.01 max 0.985 , 0.75

0.01 min 1.015 , 0.75

if then t t

if then t t





   

   
           

      (19) 

The time step t  is variable according to these rules. This time step is increased if the truncation error is 

greater than a given threshold and it is decreased if the truncation error is less than a given threshold. The 

minimum value of the time step is limited to 0.75. Experiments have been made showing that all the different 

families of Runge-Kutta methods can be used to solve the PF calculation, and these methods are more stable 

than the explicit Euler method [20]. But in our study, we proposed to use the Runge-Kutta method of higher 

order, that of the 4th order. The pseudocode for PF calculation using RK4 method is summarized in Algorithm 

1. Regarding this iterative procedure, the computing Jacobian matrix  J X needs to update 4 times per 

iteration, and also the calculation of the inverse of this matrix requires additional computation time [22]. In the 

case of algorithm, the voltage angles at PV and PQ buses, along voltage magnitudes at PQ buses constitute the 

PF variables. 

Algorithm 1  PF solution procedure using  RK4 method 

1: Set iteration counter: 0h   

2: Initial variable guess: 
   0h

X X  

3: Set time step 1t   

4: 
while 

  max abs ( ) ε
h

X  or 
maxh h

 
do 

5:  Solve (17) 

6:  Update time step t using (19)  

7:  Update iteration counter:  1h h   

8: end while 

 

The three numerical methods discussed in this article directly take into account the limits of reactive power 

generators and equipment controls. During the iteration process, a technique commonly used in these 

methods consists to check the value of the reactive power produced on the PV buses, and switching the PV bus 

to a PQ bus if the reactive power limit has been exceeded. 
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III. Results and Discussion 

3.1 Materials and systems details 

All simulations of IEEE 9-bus, IEEE 14-bus, IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems were performed 

on a LENOVO personal computer, Intel® Core
TM  

2 Duo CPU P8600 2.4 GHz and 2 GB of RAM, equipped with 

Ubuntu 18.94 LTS operating system. The PF programming codes were developed in a Matlab R2018a 

environment. The topologies, transmission lines data, and bus data of these systems test from the Institute of 

Electrical and Electronics Engineers (IEEE) can be found in [23,24]. 

In order to evaluate the efficiency and performance of the proposed method, the results of the RK4 method 

are compared with those obtained by the two classical GS and NR numerical methods, which are commonly 

used to solve the PF equations in well-conditioned case systems. 

3.2 Computation time  

Along with the iteration number, the computation time is widely used as indicator for comparing the 

performance of PF solvers. The computation time corresponds to the time spent in execution of PF solver that 

we used for the test. In all cases studies, we executed the algorithms in 100 times and the average value was 

calculated. The average computation time for the IEEE 9-bus, 14-bus, 30-bus, 57-bus, and 118-bus systems 

with the different solving methods are given in Table 2. Indeed, the convergence tolerance (accuracy) is set to
-710 . As observed, using the RK4 method consumes more computation time when comparing with the others 

methods. For example, the use of RK4 for solving the PF equations of IEEE 30-bus test system, gives the 

computation time of 10 and 18 times higher than those of GS and NR methods, respectively. Our finding shows 

that the smaller the size of power system, the smaller the computational time difference will be. For example, 

for IEEE 118-bus test system, the computation time of RK4 method is estimated to be 1.13 times higher than 

GS. The RK4 method requires a lot of additional computation time to achieve convergence. In contrast, there is 

no risk of divergence for large-scale well-conditioned system. 

 

Table 2: Computation time (seconds) for the different PF solutions 

Method 9-bus  14-bus 30-bus  57-bus 118-bus 

GS 0.015 0.025 0.159 0.719 15.734 

NR 0.014 0.021 0.085 0.687   2.217 

RK4 0.119 0.252 1.541 5.898 17.830 

 

3.3 Number of iterations 

In all the IEEE systems studied, the accuracy of the calculation is set to 10
-7

. Table 3 reports the number of 

iterations of the three cited methods to solve the PF equations for 9-bus, 14-bus, 30-bus, 57-bus, and 118-bus 

IEEE systems. We observed that the number of iterations required for the proposed RK4 method is almost 

independent of the power system size. This number is higher compared to NR method, but it is slightly low 

compared to that of the GS method. The number of iterations of the NR method increases slightly with the 

power system size. The GS method, on the other hand, is less robust and generally converges more difficult 

when the size of system is high. The NR method requires less number of iterations to reach convergence. They 

require about 12 iterations for convergence in large systems. However, the convergence of these two methods 

depends on the initial guess of the voltages. In our case, we used the initial values of the default voltages 

provided by the IEEE bus systems. 

 

Table 3. Number of iteration for the different PF solution 

Method 9-bus  14-bus 30-bus  57-bus 118-bus 

GS 98 129 360 756 4700 

NR 6 7 6 12 12 

RK4 22 21 23 23 23 
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3.4 Convergence tolerance value 

The convergence tolerance error value is an important factor that determines the accuracy of the PF solution. 

In order to better measure the performance of the RK4 method, simulations are then performed with different 

convergence tolerance values. The tolerance value is varied from -110 to -810 . The results of the simulations 

are shown in Table 4. For the GS method, while the computational accuracy is high, the number of iterations is 

large. This finding is very noticeable in the case where the size of system is large.  The number of iterations of 

the NR method is almost constant with the variation of the computational accuracy. From the convergence 

tolerance value of 0.001 , the number of iterations of the RK4 method is almost constant.  

 

Table 4. Comparison number of iterations and computational accuracy using the GS, NR and RK4 methods 

Tolerance 9-bus 14-bus 30-bus 57-bus 118-bus 

 GS NR RK4 GS NR RK4 GS NR RK4 GS NR RK4 GS NR RK4 

0.1 2 4 5 2 4 5 2 4 6 2 4 6 2 4 7 

0.01 3 4 8 4 4 7 4 4 9 14 10 9 6 10 9 

0.001 7 5 10 25 4 10 8 5 11 139 11 11 29 11 12 

0.0001 10 5 13 51 7 12 117 5 14 237 11 14 59 11 15 

0.00001 40 5 16 77 5 15 199 5 17 308 11 17 1480 11 17 

0.000001 69 5 19 103 7 18 280 5 20 590 11 20 3119 12 20 

0.0000001 98 6 22 129 7 21 360 12 23 756 12 23 4700 12 23 

0.00000001 127 6 27 157 7 24 439 6 24 908 12 26 6276 12 27 

 

3.5 Convergence errors 

The number of iterations is determined by the convergence characteristic of the method. The convergence 

features of PF solutions are described by the maximum mismatch at each calculation step as a function of 

number of iterations. The tolerance value chosen for these methods is -710 . At the end of each iteration 

process, the maximum convergence errors with the five IEEE bus systems are presented in Table 5. Based on 

that, the RK4 method gives the smaller errors compared to the GS method. Moreover, the convergence error 

of NR method is significantly low in all IEEE bus systems studies. 

 

Table 5. Convergence error for complete the process using the different PF solutions 

Method 9-bus  14-bus 30-bus  57-bus 118-bus 

GS 9.6486×10
-8

 9.8530×10
-8

 9.8718×10
-8

 9.8718×10
-8

 9.9935×10
-8

 

NR 1.6875×10
-14

 5.1878×10
-9

 7.4152×10
-14

 2.1316×10
-14

 2.0833×10
-12

 

RK4 5.5311×10
-8

 6.5760×10
-8

 5.7502×10
-8

 5.0269×10
-8

 9.9928×10
-8

 

  

Figure 1 shows the comparison of the convergence errors with the studied methods. In this figure, the 

convergence error drops rapidly for all test systems performed from the 1st iteration, and the NR method 

converges very fast. In all cases, the proposed RK4 method offers the possibility to reach the convergence 

quite fast even though it performed 4 times the Jacobian matrix inversion per iteration. The GS method may 

have convergence difficulties on the one hand, and on the other hand, it may converge to physically infeasible 

solutions.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 1.  Comparison of convergence profiles for the power systems using the three methods with -710   : 

(a) IEEE 9-bus;  (b) IEEE 14-bus;  (c) IEEE 30-bus;  (d) IEEE 57-bus ; (e) IEEE 118-bus ; (f) IEEE 118-bus (zoom). 

 

3.6 Voltage profiles 

The voltage profiles for IEEE standard  9-bus, 14-bus, 30-bus, 57-bus, and 118-bus test systems versus bus 

numbers using the GS, NR, and proposed RK4 methods are shown in Figure 2 and Figure 3. It is clearly seen 

that, the result of the RK4 method makes it possible to reduce the difference between the calculated voltages 

and their initial values. For example, in a 57-bus network, the GS, NR, and proposed RK4 methods calculated 

the voltage at bus 57 as 1.4917, 1.2182, and 1.1727 pu, respectively. The initial voltage value at bus 57 was set 
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to 1 pu. The RK4 method successfully solved the IEEE 57-bus case (Figure 2.d), and it converged to the low 

voltage solution while GS method converged to the high voltage solution. 

  

(a) (b) 

  
(c) (d) 

Figure 2. Comparison of voltage profiles for the power systems with convergence tolerance 710  : (a) IEEE 

9-bus; (b) IEEE 14-bus; (c) IEEE 30-bus; (d) IEEE 57-bus. 

 
Figure 3. Comparison of voltage profiles in the IEEE 118-bus test system 
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The GS method fails to follow the conditions imposed by the PV bus if the power system size is large (Figure 2d 

and Figure 3). The results of the well-conditioned system show that the estimation of the initial values of the 

voltages is not far from the solutions found by the NR and RK4 methods. The proposed RK4 method always 

gives the best results compared to the other methods. 

 

IV. Conclusion 

This paper proposes the RK4 method based on the analogy between the NR method and the explicit 

Euler method in finding the solutions of PF. The PF problem formulation and associated algorithms were 

presented and applied to the IEEE standard 9-bus, 14-bus, 30-bus, 58-bus, and 118-bus test systems. The GS 

method converges very well for small power system. On the other hand, the performance of this method 

reduces dramatically with increasing system size. Thus, the NR method is very robust especially for large 

system size. 

The simulation results of the RK4 method show that the computation time and the number of iterations 

to reach convergence increase with the size of system, but they are largely lower than those of the GS method; 

the convergence of the systems requires less number of iterations; and the number of iterations required for 

the convergence of system is constant when the computational accuracy increases. The convergence 

performance of the RK4 method is not better than that of the NR method. However, the robustness of both 

methods is the same, and that of the RK4 method is weaker. On the other hand, the performance of RK4 

method is better than the performance of GS method. 

This method proposed in this paper is very fast and reliable to use for solving the PF equations of large-

scale well-conditioned systems. Future work would focus on using the combination of methods to reduce the 

number of inversion of the Jacobian matrix, especially, Runge-Kutta and Broyden methods.  
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