American Journal of Sciences and Engineering Research E-ISSN - 2348 -703X, Volume 4, Issue 3, 2021

Modeling the Start, Length and End of "Tsioka Atimo" Wind Season in Southern of Madagascar Using Fuzzy Time Series

Honoré RAZAFIMANDIMBY¹, HariminoAndriamalala RAJAONARISOA^{2,} Irrish Parker RAMAZOSOA³, Adolphe Andriamanga RATIARISON⁴

¹ Dynamic laboratory of Atmosphere, Climat and Oceans (DyACO), University of Toliara

^{2, 3, 4} Dynamic laboratory of Atmosphere, Climat and Oceans (DyACO), University of Antananarivo

Abstract: Our research work consists in modeling the start, length and the end of the "Tsioka Atimo" wind season in the South of Madagascar using the Chen's method (1996) for fuzzy time series. It is a first-order model and the number of partitions is the only adjustable parameter of the model. The start, length and end of wind season are important information in the study of migratory locust movements in Southern of Madagascar. The Liebmann's method is applied to the daily wind speed series to determine the start, length and end of the wind. We consider the number of partitions as 10 then 50 then 100 partitions. Each partition corresponds to a model. Each model are evaluated by the differences between the observation and the forecast. We use the well-known Root Mean Square Error (RMSE) metric to evaluate the models. A low Root Mean Square Error corresponds to a good model. As a result, among the candidate models, Chen's method for fuzzy time series model with 100 partitions is the best for the start, length and end of "Tsioka Atimo" wind season in Southern of Madagascar.

Key words: Start of windy season, windy season length, end of wind season, Chen's method, fuzzy time series, Southern of Madagascar.

I. Introduction

The South of Madagascar is an area of frequent occurrence of migratory locusts. For several weeks, locusts devour all the crops in the south of the island, threatening the meagre livelihoods of an already vulnerable population [1]. The locust invasion exacerbates the chronic famine problem in the area [2]. Since locusts move continuously from one place to another, the trajectory of the locust invasion is the parameter witch interest researchers. It is therefore of great importance to know how locusts movement. As locusts move through the air, the meteorological parameter wind is assumed to be the most influential parameter in the movement of locust invasions. In this area, the wind called "TsiokaAtimo" blows every year. The problematic that arises is how the start, length and end of this wind vary from year to year.

The solution of this problematic need the modeling. Statistics offers a multitude of types of models capable of modeling time series. For our case, we use Chen's method for fuzzy time series (1996) [3]. This is method is the application of the first fuzzy time series theory which the application of fuzzy logic invented by Lotfi Zadeh in [4] to time series [5].

II. Materials and methods

2.1 Experimental data

We use wind reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) [6] in the locust area (20°S to 26°S and 43°E to 47°E). We retrieve from ECMWF the daily meridional and zonal components of the wind with resolution 1°x1°. The temporal coverage of our datasets is from January, 1 1979 to December, 31 2017. From the meridian and zonal components of wind, we calculate the daily, then monthly, and annual wind speed at each grid point. For each year, we apply the Liebmann's method to the daily wind speed series to determine the start, length and end of the wind season.

Table 1, 2 and 3 below show the start, length and end of the wind season respectively.

Voar	Start of "Tsioka Atimo" windy season			
Year	(Rank of the day from Janary,1 st)			
1979	163			
1980	179			
1981	89			
1982	28			
1983	161			
1984	19			
1985	40			
1986	44			
1987	101			
1988	26			
1989	54			
1990	130			
1991	44			
1992	157			
1993	57			
1994	29			
1995	20			
1996	22			
1997	21			
1998	35			
1999	176			
2000	33			
2001	67			
2002	82			
2003	160			
2004	20			
2005	72			
2006	174			
2007	51			
2008	30			
2009	81			
2010	168			
2011	29			
2012	5			

Table 1: Datasets of start of "Tsioka Atimo" windy season

www.iarjournals.com

American Journal of Sciences and Engineering Research

2013	21
2014	79
2015	3
2016	82
2017	65

Table 2: "Tsioka Atimo" windy season length

Voor	Wind duration
rear	(In day)
1979	92
1980	109
1981	207
1982	68
1983	123
1984	103
1985	19
1986	35
1987	219
1988	77
1989	49
1990	184
1991	74
1992	128
1993	22
1994	39
1995	141
1996	101
1997	25
1998	23
1999	129
2000	35
2001	153
2002	261
2003	100
2004	159
2005	28
2006	140
2007	25
2008	54
2009	34
2010	113
2011	23
2012	59
2013	36
2014	25
2015	72
2016	164
2017	279

Year	(Rank of the day from Janary.1 st)			
1979	255			
1980	288			
1981	296			
1982	96			
1983	248			
1984	122			
1985	59			
1986	79			
1987	320			
1988	103			
1989	103			
1990	314			
1991	118			
1992	285			
1993	79			
1994	68			
1995	161			
1996	123			
1997	46			
1998	58			
1999	305			
2000	68			
2001	220			
2002	303			
2003	260			
2004	179			
2005	100			
2006	314			
2007	76			
2008	84			
2009	115			
2010	281			
2011	52			
2012	64			
2013	57			
2014	104			
2015	75			
2016	246			
2017	320			

Table 3: End of wind "TsiokaAtimo

2.2 Methodology

The pioneering of fuzzy time series is SONG and CHISSON (1993) [7] but we use here the evolution published by CHEN (1996) [3]. The idea is to divide the universe of time series discourse into intervals or partitions (fuzzy sets), and to learn how each area behaves (extract rules through time series models). The

rules in these models indicate how the partitions relate to themselves over time, as values jump from one place to another.

The methodology adopted is divided into three phases:

- The training phase ;
- The forecasting phase;
- The model evaluation phase.

a) The training phase

a.1) Definition of the universe of discourse U

The universe of discourse U is none other than the width of the statistical series with a 20% safety margin.

a.2) Partitioning the universe of discourse

In our study, we subdivide the universe of discourse into 10, then 50, then 100 partitions. Let à be the set of

linguistic variables. Making n partitions consists in creating n fuzzy sets named $A_0, A_1, ..., A_{n-1}$

$A = \left\{ A_0, A_1, \dots, A_{n-1} \right\}$

a.3) Fuzzification

Fuzzification consists to convert the numerical values of X (t) (the time series to be modelled) into fuzzy values of the linguistic variable \tilde{A} , giving rise to the fuzzy time series F (t).

a.4) Creation of temporal models

A temporal model indicates two fuzzy sets which appear sequentially on fuzzy time series F (t) and have the format:

Precedent \rightarrow Consequent,

Where the precedent indicate a fuzzy set at time t and the consequent, the fuzzy set which appears shortly after at time t + 1.

a.5) Creating rules

Our rules also have the format:

Precedent \rightarrow Consequent.

Given the temporal patterns generated earlier, we will group them by its precedents. Our model will contain a rule for each distinct precedent found, and the consequent of each rule will be the union of all the consequents of each temporal pattern with the same precedent.

b) The forecasting phase

b-1) Fuzzification of the input value

The input value x (t) will be converted into fuzzy values of the language variable \tilde{A} , generating the value f (t). As in the training phase, only the most relevant set is chosen.

b-2) Find the compatible rules

Find the rule whose prior is equal to f(t). The consequence of the rule will be the fuzzy forecast for t + 1, i.e. f(t + 1).

b-3) Defuzzification

Defuzzification consists in converting the fuzzy value f (t+1) into a numerical value corresponding to the forecast value.

$$x(t+1) = n_{\cdot}^{-1} \sum A_i$$

For i = 0...n-1 and n equals the number of fuzzy sets in f (t + 1).

c) The model evaluation phase

Each number of partitions corresponds to a model. The Root Mean Square Error (RMSE) is used to assess the difference between the observed data and the data from the model. The following formula allows us to calculate the RMSE:

RMSE=
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} [X(t) - \overline{X}(t)]^{2}}$$
 (2)

Where: n: number of observations

X(t) : The value observed at time t ;

 $\bar{X}(t)$: The output value of the model corresponding to the forecast data at time t.

III. Results

Table 4 below gives us the RMSE values according to the number of partitions for the start of wind season. We find that the Chen's method for fuzzy time series model with 100 partitions is the best. Table 4: RMSE according to the number of partitions for start of windy season

Number of partitions	10	50	100
RMSE	50,44	39.61	17.5

Table 5 below gives us the RMSE values according to the number of partitions for the case of windy season length. We note that once again, the Chen's method for fuzzy time series model with 100 partitions is still the best.

Table 5: RMSE according to the number of partitions for windy season length

Number of partitions	10	50	100
RMSE	62	37.58	23.18

Table 6 below gives us the RMSE values according to the number of partitions for the end of windy season. Again, the Chen's method for fuzzy time series with 100 partitions is recommended.

Table 6' RMSE	according to	the number of	f nartitions f	or the end	of wind	/ season
	according to	the number t		or the end	UI WIIIU	

Number of partitions	10	50	100
RMSE	83	52,03	52

Figure 1 below shows the results of the start of windy season modeling for 100 partitions. In blue we have the observed data and in orange the data from the model.

Start of windy season modeling with Chen's Method (100 partitions)

Figure 2 below shows the results of windy season length modeling for 100 partitions. In blue we have the observed data and in orange the prediction.

Windy season length Modeling with Chen's Method (100 partitions)

Figure 2: Result of windy season length modeling (100 partitions)

Figure 3 below shows the results of the end of windy season modeling for 100 partitions. In blue we have the observed data and in orange the prediction.

IV. Discussions

The Liebmann's method [8][9] is often used to determine the onset, end set and duration of the rainy season. In our work, we used it to determine the start, length and end of wind in Southern of Madagascar. Fuzzy time series modeling was used by CHEN for the first time in 1996 to model enrolment at the University of Albama, and other researchers used this model to model other types of annual data. We have used exactly this method to model the start of windy season, windy season length and the end of windy season in Southern of Madagascar. Note that there are many other variants of fuzzy time series models. In the context of our research, the number of partitions is the only parameter of the model. Other researchers add other

parameters such as the order of the model [10]. To evaluate the models obtained, we use the RMSE metric. Other metrics are also common such as MAE, MAPE, etc [11] [12].

V. Conclusion

The research about start wind season, windy season length and end of windy season is useful to analyze the movements of migratory locusts. The Chen's method invented in 1996 is used for modeling. It is a firstorder model with a variable the number of partitions. We consider only 10, 50 and 100 as number of partitions. The difference between the forecast and the observation is appreciated by the Root Mean Square Error (RMSE) metrics. In all possible cases, the model with 100 partitions is the best.

VI. Références

- 1. http://www.fao.org/emergencies/ressources/videos/video-detail/fr/c/176328/
- 2. <u>https://www.swissinfo.ch/fre/ins%C3%A9curit%C3%A9-alimentaire_les-criquets-menacent-le-sud-de-madagascar-exsangue/31044096</u>
- Chen. (1996). "Forecasting enrollments based on fuzzy time series". Fuzzy sets and systems, vol. 81, number 3, pp. 311–319, 1996. URL: <u>https://doi.org/10.1016/0165–0114(95)00220–0</u>.
- 4. Novák, V., Perfilieva, I. and Močkoř, J., Mathematical principles of fuzzy logic, Dordrecht, Kluwer Academic, 1999, 320 pp.
- Régis Bourbonnais, Michel Terraza, Analyse des séries temporelles : applications à l'économie et à la gestion, 4^eEdt. <u>Dunod</u>, 2016.<u>https://www.ecmwf.int</u>
- Song, Qiang; Chissom, Brad S. (1991). "Fuzzy time series and its models". Fuzzy sets and systems, vol. 54, number 3, pp. 269–277, 1993. URL: <u>https://doi.org/10.1016/0165-0114(93)90372-0</u>).
- 7. Dunning, C. M., Black, E. C., & Allan, R. P. (2016). The onset and cessation of seasonal rainfall over Africa. *Journal of Geophysical Research: Atmospheres*, *121*(19), 11-405.
- 8. Gonzalez, M., Vera, C. S., Liebmann, B., Marengo, J. A., Kousky, V., & Allured, D. (2007). « The nature of the rainfall onset over central South America ». *Atmósfera*, *20*(4), 377-394.
- Harimino Andriamalala RAJAONARISOA, Irrish Parker RAMAHAZOSOA, H. Zojaona. S. Z. REZIKY, Adolphe Andriamanga RATIARISON. (2020). « Annual precipitation in Southern of Madagascar: modeling using high order fuzzy time series ». International Journal of Fuzzy Logic System, 10(4) ,1-16. https://wireilla.com/papers/ijfls/V10N4/10420ijfls01.pdf)
- 10. Willmott, C. J., & Matsuura, K. (2005). « Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance ». *Climate research*, *30*(1), 79-82.
- 11. Chai, T., & Draxler, R. R. (2014). « Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature ». *Geoscientific model development*, 7(3), 1247-1250.